Общая теория систем людвига фон берталанфи и другие науки. Основы теории систем

Значительные проблемы, стоящие перед нами, не могут быть решены на том же уровне мышления, на котором мы их создали.

Альберт Эйнштейн

Основные положения теории систем

Возникновение теории систем было обусловлено необходимостью обобщения и систематизации знаний о системах, которые сформировались в процессе становления и исторического развития неких «системных» идей. Суть идей этих теорий заключалась в том, что каждый объект реального мира рассматривался в качестве системы , т.е. представлял собой совокупность частей, составлявших единое целое. Сохранение целостности любого объекта обеспечивалось за счет связей и отношений между его частями.

Развитие системного мировоззрения происходило на протяжении длительного исторического периода, в рамках которого были обоснованы следующие важные постулаты:

  • 1) понятие «система» отражает внутренний порядок мира, обладающего собственной организацией и структурой, в отличие от хаоса (отсутствие организованного порядка);
  • 2) целое больше суммы его частей;
  • 3) познать часть можно только при одновременном рассмотрении целого;
  • 4) части целого находятся в постоянной взаимосвязи и взаимной зависимости.

Процесс интеграции системных взглядов, большой объем эмпирических знаний о системах в разных научных областях, и прежде всего в философии, биологии, физике, химии, экономике, социологии, кибернетике, привел в XX в. к необходимости теоретического обобщения и обоснования «системных» идей в самостоятельную теорию систем.

Одним из первых, кто предпринял попытку обосновать системную теорию организации систем, был русский ученый А. А. Богданов , который в период с 1912 по 1928 г. разработал «всеобщую организационную науку». В основе труда Богданова «Тектология. Всеобщая организационная наука» лежит следующая идея: существование закономерностей организации частей в единое целое (систему) путем структурных связей, характер которых может способствовать организации (или дезорганизации) внутри системы. В гл. 4 мы более подробно остановимся на основных положениях всеобщей организационной науки, которую А. А. Богданов также называл тектологией. Эти положения в настоящее время приобретают большую актуальность в связи с необходимостью динамичного развития социально- экономических систем.

Дальнейшее развитие системная теория получила в трудах австрийского биолога Л. фон Берталанфи. В 1930-е гг. он обосновал ряд системных положений, которые объединили имевшиеся на тот момент знания в области исследования систем разной природы. Эти положения легли в основу обобщенной концепции общей теории систем (ОТС), выводы из которой позволили разработать математический аппарат для описания систем разных типов. Свою задачу ученый видел в том, чтобы исследовать общность понятий, законы существования и методы исследования систем па основе принципа изоморфизма (подобия ) в качестве универсальных научных категорий и фундаментальной основы развития научных знаний о системах на междисциплинарном уровне. В рамках этой теории была сделана попытка количественно определить и исследовать такие фундаментальные понятия, как «целесообразность» и «целостность».

Важным результатом работы Л. фон Берталанфи стало обоснование концепции сложной открытой системы , в рамках которой ее жизнедеятельность возможна лишь при взаимодействии с окружающей средой на основе обмена ресурсами (материальными, энергетическими и информационными), необходимыми для ее существования. Следует отметить, что термин «общая теория систем» в научном сообществе подвергался серьезной критике в связи с высоким уровнем его абстракции. Термин «общая» имел скорее дедуктивный характер, так как позволял обобщить теоретические выводы о закономерностях организации и функционирования систем разной природы, являлся научно-методологической концепцией исследования объектов в качестве систем и методов их описания на языке формальной логики.

Дальнейшее развитие ОТС получила в работах американского математика М. Месаровича , который предложил математический аппарат описания систем ! , позволяющий моделировать объекты-системы, сложность которых определяется числом составных элементов и видом их формализованного описания. Он обосновал возможность математического представления системы в виде функций , аргументами которых являются свойства его элементов и характеристики структуры.

Математическое обоснование закономерностей соединения элементов в систему и описание их связей представлялось им с помощью математических средств, т.е. с помощью дифференциальных, интегральных, алгебраических уравнений или в виде графов, матриц и графиков. Большое значение в своей математической теории систем М. Месарович придавал исследованию системы управления, так как именно структура управления отражает характер функциональных связей и отношений между элементами, которые во многом определяют ее состояние и поведение в целом. На основе применения математических средств был разработан струк-

турно-функциональный метод (подход) описания системы управления в качестве единой системы переработки информации (возникновения, хранения, преобразования и передачи). Система управления рассматривалась как поэтапная система принятия решений, основанная на формализованных процедурах. Использование структурно-функционального подхода исследования систем позволило М. Месаровичу создать теорию иерархических многоуровневых систем*, которая стала прикладным направлением в дальнейшем развитии теории управления системами.

В 1960-1970 гг. системные идеи стали проникать в разные области научных знаний, что привело к созданию предметных системных теорий, т.е. теорий, которые исследовали предметные аспекты объекта на основе системных принципов: биологических, социальных, экономических систем и т.д. Постепенно обобщение и систематизация знаний о системах разной природы привели к формированию нового научно-методологического направления исследования явлений и процессов, которое в настоящее время называется теорией систем.

Так, в 1976 г. в Москве был создан Институт системных исследований АН СССР. Цель его создания состояла в развитии методологии системных исследований и системного анализа. Большой вклад в это дело внести многие советские ученые: В. Г. Афанасьев , И. В. Блауберг, Д. М. Гвишиани, Д. С. Конторов, Я. Я. Моисеев, В. Я. Садовский, А. И. Уемов, Э. Г. Юдин и многие другие.

Советский философ В. Я. Садовский отмечал: «Процесс интеграции приводит к выводу, что многие проблемы получат правильное научное освещение только в том случае, если они будут опираться одновременно на общественные, естественные и технические науки. Это требует применения результатов исследования разных специалистов - философов, социологов, психологов, экономистов, инженеров. В связи с усилением процессов интеграции научных знаний возникла потребность в развитии системных исследований» .

Философ А. И. Уёмов в 1978 г. опубликовал монографию «Системный подход и общая теория систем», в которой предложил свой вариант параметрической теории систем. Методологической основой этой теории стали положения материалистической диалектики, в частности метод восхождения от абстрактного к конкретному. В данной теории автор определил ряд системных понятий, закономерностей систем и их параметрических свойств. В частности, понятие «система» он рассматривал в качестве обобщенной философской категории, отражающей «...всеобщие стороны, отношения и связи между реальными объектами в определенной исторической и логической последовательности » .

И. В. Блауберг и Э. Г. Юдин считали, что «метод целостного подхода имеет важное значение в становлении более высоких ступеней мышления, а именно перехода от аналитической ступени к синтетической, которая направляет познавательный процесс к более всестороннему и глубокому познанию явлений» . Развитие метода целостного подхода при исследовании систем разной природы привело к разработке универсальных теоретических положений, которые были объединены в единую теоретико-методологическую базу исследования в качестве междисциплинарной науки, названной теорией систем.

Дальнейшее развитие теории систем пошло по трем основным научным направлениям: системономия, системология и системотехника.

Системономия (от греч. nomos - закон) - учение о системах как проявлении законов Природы. Это направление является философским обоснованием системного мировоззрения, объединяющего системный идеал, системный метод и системную парадигму.

Обратите внимание!

Главный тезис теории систем гласит: «Любой объект исследования есть объект- система и любой объект-система принадлежит хотя бы одной системе объектов одного и того же рода». Это положение является основополагающим в формировании системных взглядов и объективного восприятия мира Человека и мира Природы в качестве взаимосвязанных объектов (явлений, процессов), касающихся систем разной природы.

В конце 1950-х - начале 1960-х гг. появилось новое методологическое направление исследования сложных и больших систем - системный анализ. В рамках системного анализа решаются сложные проблемы проектирования систем с заданными свойствами, осуществляется поиск альтернативных решений и выбор оптимального для конкретного случая.

В 1968 г. советский ученый В. Т. Куликов предложил термин «системология» (от греч. logos - слово, учение) для обозначения науки о системах. В рамках этой науки объединяются все варианты существующих теорий о системах, включая общую теорию систем, специализированные теории систем и системный анализ.

Системология как междисциплинарная наука на качественно новом уровне интегрирует теоретические знания о понятиях, законах и закономерностях существования, организации, функционирования и управления системами различной природы с целью создания целостной системной методологии исследования систем. В системологии обобщаются не только научные знания о системах, их возникновении, развитии и преобразовании, но и изучаются проблемы их саморазвития на основе теории синергетики.

Исследования в области кибернетики (II. Винер), развитие технических и компьютерных систем, которые инициировали формирование новой системы «человек - техника», потребовали развития прикладных системных теорий, таких как исследование операций, теория автоматов, теория алгоритмов и т.п. Так появилось новое направление в развитии системного подхода под названием «системотехника». Следует отметить, что понятие «система» в сочетании с понятием «техника» (от греч. techne - искусство применения, мастерство) рассматривалось в качестве комплекса общих и частных методик практического применения системных принципов и методов описания состояния и поведения систем математическим языком.

Впервые в России это термин был введен в 1960-е гг. советским ученым, профессором кафедры кибернетики МИФИ Г. Н. Поваровым. Тогда это считалось инженерной дисциплиной, изучающей проектирование, создание, испытание и эксплуатацию сложных систем технического и социально-технического назначения. За рубежом этот термин возник в период между двумя мировыми войнами XX в. как сочетание двух понятий инженерного искусства (от англ, system design - разработка, проектирование технических систем) и инжиниринга (англ, systems engineering - конструирование, создание систем, техника разработки систем, системный метод разработки), которые объединили разные направления науки и техники о системах.

Системотехника - научно-прикладное направление, изучающее общесистемные свойства системотехнических комплексов (СТК).

Системные идеи все больше проникали в частные теории систем разной природы, поэтому основные положения теории систем становятся фундаментальной основой современных системных исследований, системного мировоззрения.

Если системология в основном использует качественные представления о системах на основе философских понятий, то системотехника оперирует количественными представлениями и опирается на математический аппарат их моделирования. В первом случае - это теоретико-методологические основы исследования систем, во втором - научно-практические основы проектирования и создание систем с заданными параметрами.

Постоянное развитие теории систем позволило объединить предметно- содержательный (онтологический) и теоретико-познавательный (гносеологический) аспекты теорий о системах и сформировать общесистемные положения, которые рассматриваются в качестве трех основных общесистемных законов систем (эволюции, иерархии и взаимодействия). Закон эволюции объясняет целевую направленность создания природных и социальных систем, их организацию и самоорганизацию. Закон иерархии определяет тип структурных отношений в сложных многоуровневых системах, для которых характерны упорядоченность, организованность, взаимодействие между элементами целого. Иерархия отношений является основой построения системы управления. Закон взаимодействия объясняет наличие обменных процессов (веществом, энергией и информацией) между элементами в системе и системы с внешним окружением для обеспечения ее жизнедеятельности.

Предметом исследования в теории систем являются сложные объекты- системы. Объектом исследования в теории систем являются процессы создания, функционирования и развития систем.

В теории систем изучаются:

  • различные классы, виды и типы систем;
  • устройство системы (структура и ее виды);
  • состав системы (элементы, подсистемы);
  • состояние системы;
  • основные принципы и закономерности поведения систем;
  • процессы функционирования и развития систем;
  • окружающая среда, в рамках которой выделена и организована система, а также процессы, протекающие в ней;
  • факторы внешней среды, влияющие на функционирование системы.

Обратите внимание!

В теории систем все объекты рассматриваются в качестве систем и исследуются в виде обобщенных (абстрактных) моделей. Эти модели основаны на описании формальных связей между ее элементами и различными факторами внешней среды, влияющими на ее состояние и поведение. Результаты исследования объясняются лишь на основе взаимодействия элементов (компонентов) системы, т.е. па основе ее организации и функционирования, а не на основе содержания (биологического, социального, экономического и др.) элементов систем. Специфика содержания систем изучается предметными теориями систем (экономических, социальных, технических и т.п.).

В теории систем был сформирован понятийный аппарат, который включает такие общесистемные категории, как цель , система, элемент , связь, отношение, структура, функция, организация, управление, сложность, открытость и др.

Эти категории являются универсальными для всех научных исследований явлений и процессов реального мира. В теории систем определены такие категории, как субъект и объект исследования. Субъектом исследования является наблюдатель, который играет важную роль в определении цели исследования, принципов выделения объектов в качестве элементов из среды и их компоновки для объединения в целый объект-систему.

Система рассматривается как некое единое целое, состоящее из взаимосвязанных элементов, каждый из которых, обладая определенными свойствами, вносит свой вклад в уникальные характеристики целого. Включение наблюдателя в систему обязательных категорий теории систем позволило расширить ее основные положения и глубже понять сущность системных исследований (системного подхода). К основным положениям теории систем можно отнести следующие:

  • 1) понятие «система» и понятие «среда» являются основой теории систем и имеют фундаментальное значение. Л. фон Берталанфи определял систему как «совокупность элементов, находящихся в определенных отношениях друг с другом и со средой» ;
  • 2) взаимоотношения системы со средой имеют иерархический и динамический характер;
  • 3) свойства целого (системы) определяются характером и типом связей между элементами.

Следовательно, основное положение теории систем состоит в том, что любой объект исследования в качестве системы необходимо рассматривать в тесной взаимосвязи с окружающей средой. С одной стороны, элементы системы влияют друг на друга через взаимные связи при обмене ресурсами; с другой стороны, состояние и поведение целостной системы создает изменения в ее окружении. Эти положения и составляют основу системных взглядов (системного мировоззрения) и принципа системных исследований объектов реального мира. Наличие взаимосвязей между всеми явлениями в природе и обществе определено современной философской концепцией познания Мира в качестве целостной системы и процесса мирового развития.

Методология теории систем сформировалась на основе фундаментальных законов философии, физики, биологии, социологии, кибернетики, синергетики и других системных теорий.

Основными методологическими принципами теории систем являются:

  • 1) устойчиво-динамичные состояния системы при сохранении внешней формы и содержания в условиях взаимодействия с окружающей средой - принцип целостности ;
  • 2) деления целого на элементарные частицы - принцип дискретности ;
  • 3) формирования связей при обмене энергией, информацией и веществом между элементами системы и между целостной системой и окружающей ее средой - принцип гармонии ;
  • 4) построения отношений между элементами целого образования (структура управления системой) - принцип иерархии ;
  • 5) соотношения симметрии и диссимметрии (асимметрии) в природе как степень соответствия описания реальной системы формальными методами - принцип адекватности.

В теории систем широко используются методы моделирования систем, а также математический аппарат ряда теорий:

  • множеств (формально описывает свойства системы и ее элементов на основе математических аксиом);
  • ячеек (подсистем) с определенными граничными условиями, причем между этими ячейками происходит перенос свойств (например, цепная реакция);
  • сетей (изучает функциональную структуру связей и отношений между элементами в системе);
  • графов (изучает реляционные (матричные) структуры, представляемые в топологическом пространстве);
  • информации (изучает способы информационного описания системы- объекта на основе количественных характеристик);
  • кибернетики (изучает процесс управления, т.е. передачи информации между элементами системы и между системой и окружающей средой, с учетом принципа обратной связи);
  • автоматов (система рассматривается с точки зрения «черного ящика», т.е. описания входных и выходных параметров);
  • игр (исследует систему-объект с точки зрения «рационального» поведения при условии получения максимального выигрыша при минимальных потерях);
  • оптимальных решений (позволяет математически описать условия выбора наилучшего решения из альтернативных возможностей);
  • очередей (опирается на методы оптимизации обслуживания элементов в системе потоками данных при массовых запросах).

В современных системных исследованиях экономических и социальных систем больше внимание уделяется средствам описания сложных процессов динамичной устойчивости , которые исследуются в теориях синергетики, бифуркаций, особенностей, катастроф и др., которые опираются на описание нелинейных математических моделей систем.

  • Месарович М., Такахара Я. Общая теория систем: математические основы / под ред.С. В. Емельянова; пер. с англ. Э. Л. Наппельбаума. М.: Мир, 1978.
  • Берталанфи Л. фон. История и статус общей теории систем // Системные исследования: ежегодник. 1972. М.: Наука, 1973. С. 29.

Австрийский учёный-биолог, проживавший в Канаде и США, Людвиг фон Берталанфи, в 1937 году впервые выдвинул ряд идей, которые позже он объединил в одну концепцию. Он назвал её «Общая теория систем». Что же это такое? Это научная концепция изучения различных объектов, рассматриваемых в качестве системы.

Основная идея предложенной теории заключалась в том, что законы, управляющие системными объектами, - едины, одинаковы для разных систем. Справедливости ради надо сказать, что основные идеи Л. Берталанфи были заложены разными учёными, в том числе и русским философом, писателем, политическим деятелем, врачом, в своем фундаментальном труде «Тектология», написанном им в 1912 году. А.А. Богданов активно участвовал в революции, однако, во многом был не согласен с В.И. Лениным. не принял, но, тем не менее, продолжил сотрудничество с большевиками, организовав первый в тогдашней России Институт переливания крови и ставя на себе медицинский эксперимент. Он погиб в 1928 году. Мало кто знает и сегодня, что в начале двадцатого века русский учёный-физиолог В.М. Бехтерев, независимо от А.А. Богданова, описал более 20 универсальных законов в сфере психологических и социальных процессов.

Общая теория систем изучает различные виды, структуру систем, процессы их функционирования и развития, организацию компонентов структурно-иерархических уровней, и многое другое. Л. Берталанфи также исследовал так называемые открытые системы, обменивающиеся свободной энергией, веществом и информацией со средой.

Общая теория систем в настоящее время исследует такие общесистемные закономерности и принципы, как, например, гипотеза семиотической обратной связи, организационной непрерывности, совместимости, взаимодополнительных соотношений, закон необходимого разнообразия, иерархических компенсаций, принцип моноцентризма, наименьших относительных сопротивлений, принцип внешнего дополнения, теорема о рекурсивных структурах, закон расхождения и другие.

Современное состояние наук о системах многим обязано Л. Берталанфи. Общая теория систем во многом схожа по целям либо методам исследования с кибернетикой - наукой об общих закономерностях процесса управления и передачи информации в разных системах (механические, биологические или социальные); теорией информации — разделом математики, определяющим понятие информации, её законы и свойства; теорией игр, анализирующей с помощью математики конкуренцию двух или более противостоящих сил с целью получения наибольшего выигрыша и наименьшего проигрыша; теорией принятия решений, анализирующей рациональные выборы среди различных альтернатив; факторным анализом, использующим процедуру выделения факторов в явлениях со многими переменными.

Сегодня общая теория системполучает мощный импульс для своего развития в синергетике. И. Пригожин и Г. Хакен исследуют неравновесные системы, диссипативные структуры и энтропию в открытых системах. Кроме этого, из теории Л. Берталанфи выделились такие прикладные научные дисциплины, как системотехника - наука о системном планировании, проектировании, оценке и конструировании систем вида «человек-машина»; инженерная психология; теория полевого поведения исследование операций - наука об управлении компонентами экономических систем (люди, машины, материалы, финансы и другое); СМД-методология, которая была разработана Г.П. Щедровицким, его сотрудниками и учениками; теория интегральной индивидуальности В. Мерлина, основу которой составила во многом рассмотренная выше общая теория систем Берталанфи.

Искандер Хабибрахманов написал для рубрики «Рынок игр» материал о теории систем, принципах поведения в них, взаимосвязях и примерах самоорганизации.

Мы живем в сложном мире и не всегда понимаем, что происходит вокруг. Мы видим людей которые становятся успешными не заслужив этого и тех, кто действительно достоин успеха, но остается в безвестности. Мы не уверены в завтрашнем дне, мы все больше закрываемся.

Чтобы объяснить непонятные нам вещи, мы придумывали шаманов и гадалок, легенды и мифы, университеты, школы и онлайн-курсы, но это, кажется, не помогло. Когда мы учились в школе, нам показывали картинку ниже и спрашивали, что случится, если потянуть за нитку.

Со временем большинство из нас научались давать правильный ответ на этот вопрос. Однако затем мы выходили в открытый мир, и наши задачи начинали выглядеть так:

Это вело к фрустрации и апатии. Мы стали похожими на мудрецов из притче о слоне, каждый из которых видит лишь маленькую часть картины и не может сделать правильный вывод об объекте. У каждого из нас свое непонимание мира, нам сложно коммуницировать его друг с другом, и это делает нас еще более одинокими.

Дело в том, что мы живем в век двойного сдвига парадигмы. С одной стороны, мы отходим от механистической парадигмы общества, доставшейся нам от индустриального века. Мы понимаем, что входы, выходы и мощности не объясняют всего разнообразия мира вокруг нас, и зачастую на него гораздо сильнее влияют социокультурные аспекты общества.

С другой стороны, огромное количество информации и глобализация ведут к тому, что вместо аналитического анализа независимых величин мы должны изучать взаимозависимые объекты, неделимые на отдельные составляющие.

Кажется, что от умения работать с этими парадигмами зависит наше выживание, и для этого нам нужен инструмент, как когда-то нужны были инструменты для охоты и обработки земли.

Одним из таких инструментов является теория систем. Ниже будут примеры из теории систем и ее общие положения, будет больше вопросов чем ответов и, надеюсь, будет немного вдохновения узнать об этом больше.

Теория систем

Теория систем - это довольно молодая наука на стыке большого количества фундаментальных и прикладных наук. Это своего рода биология от математики, которая занимается описанием и объяснением поведения тех или иных систем и общего между этим поведением.

Существует множество определений понятия системы, вот одно их них. Система - множество элементов, находящихся в отношениях, которое образует определенную целостность структуры, функции и процессов.

В зависимости от целей исследований, системы классифицируют:

  • по наличию взаимодействия с внешним миром - открытые и закрытые;
  • по количество элементов и сложности взаимодействия между ними - простые и сложные;
  • по возможности наблюдения всей системы полностью – малые и большие;
  • по наличию элемента случайности - детерминированные и недетерминированные;
  • по наличию у системы цели - казуальные и целенаправленные;
  • по уровню организации - диффузные (случайные блуждания), организованные (наличие структуры) и адаптивные (структура подстраивается под изменения вовне).

Также у систем существуют особые состояния, изучение которых дает понимание о поведении системы.

  • Устойчивый фокус. При небольших отклонениях, система снова возвращается в исходное состояния. Пример - маятник.
  • Неустойчивый фокус. Небольшое отклонение выводит систему из равновесия. Пример - конус, поставленный острием на стол.
  • Цикл. Некоторые состояния системы циклически повторяются. Пример - история разных стран.
  • Сложное поведение. Поведение системы обладает структурой, но она настолько сложна, что предсказать будущее состояние системы не представляется возможным. Пример - цены на акции на бирже.
  • Хаос. Система полностью хаотична, в ее поведении полностью отсутствует структура.

Зачастую при работе с системами, мы хотим сделать их лучше. Поэтому нужно задавать себе вопрос, в какое особое состояние мы хотим ее привести. Идеально, если интересующее нас новое состояние является устойчивым фокусом, тогда мы можем быть спокойны, что если мы достигнем успеха, то он не исчезнет на следующий день.

Сложные системы

Мы все чаще встречаем вокруг нас сложные системы. Здесь я не нашел звучащих терминов в русском языке, поэтому придется говорить на английском. Существует два принципиально разных понятия сложности.

Первый (complicatedness) - означает некоторую сложность устройства, которая применяется к навороченным механизмам. Такой вид сложности зачастую порождает неустойчивость системы к малейшим изменениям в окружающей среде. Так, если на заводе остановится один из станков, он может вывести из строя весь процесс.

Второй (complexity) - означает сложность поведения, например, биологических и экономических систем (либо их эмуляций). Такое поведение напротив сохраняется даже при некоторых изменениях окружающей среды или состояния самой системы. Так, при уходе крупного игрока с рынка, игроки меньше поделят его долю между собой, и ситуация стабилизируется.

Зачастую сложные системы обладают свойствами, которые способны ввергнуть непосвященного в апатию, и сделать работу с ними трудной и интуитивно непонятной. Такими свойства являются:

  • простые правила сложного поведения,
  • эффект бабочки или детерминированный хаос,
  • эмерджентность.

Простые правила сложного поведения

Мы привыкли, что если нечто демонстрирует сложное поведение, то оно, скорее всего, сложно устроено внутри. Поэтому мы видим закономерности в случайных событиях и пытаемся объяснить непонятные нам вещи происками злых сил.

Однако это не всегда так. Классическим примером простого внутреннего устройства и сложно внешнего поведения является игра «Жизнь». Она состоит из нескольких простых правил:

  • вселенная - клетчатая плоскость, есть начальное расположение живых клеток.
  • в следующий момент времени живая клетка живет, если у нее два или три соседа;
  • иначе она умирает от одиночества или перенаселения;
  • в пустой клетке, рядом с которой ровно три живые клетки, зарождается жизнь.

В целом, для написания программы, которая будет реализовывать эти правила, потребуется пять-шесть строчек кода.

При этом данная система может производить довольно сложные и красивые шаблоны поведения, так что не видя самих правил их сложно угадать. И уж точно сложно поверить, что это имплементируется несколькими строчками кода. Возможно, реальный мир также построен на нескольких простых законах, которые мы еще не вывели, а все безграничное многообразие порождается этим набором аксиом.

Эффект бабочки

В 1814 году Пьер-Симон Лаплас предложил мысленный эксперимент, заключающийся в существовании разумного существа, способного воспринять положение и скорость каждой частицы вселенной и знающего все законы мира. Вопрос заключался в теоретической способности такого существа предсказывать будущее вселенной.

Данный эксперимент вызвал множество споров в научных кругах. Ученые, вдохновленные прогрессом в вычислительной математике, склонялись к положительному ответу на данный вопрос.

Да, мы знаем, что принцип квантовой неопределенности исключает существование такого демона даже в теории, и предсказание положения всех частиц в мире принципиально невозможно. Но возможно ли оно в более простых детерминированных системах?

Действительно, если мы знаем состояние системы и правила, по которым они изменяются, что мешает нам вычислить следующее состояние? Нашей единственной проблемой может стать ограниченное количество памяти (мы можем хранить числа с ограниченной точностью), но все вычисления в мире так и работают, поэтому это не должно стать проблемой.

На самом деле нет.

В 1960 году Эдвард Лоренц создал упрощенную модель погоды, состоящую из нескольких параметров (температура, скорость ветра, давление) и законов, по которым из текущего состояния получается состояние в следующий момент времени, представляющих набор дифференциальных уравнений.

dt = 0,001

x0 = 3,051522

y0 = 1,582542

z 0 = 15,623880

xn+1 = xn + a(-xn + yn)dt

yn+1 = yn + (bxn - yn - znxn)dt

zn+1 = zn + (-czn + xnyn)dt

Он вычислял значения параметров, выводил их на монитор и строил графики. Получалось что-то вроде этого (график для одной переменной):

После этого Лоренц решил перестроить график, взяв некоторую промежуточную точку. Логично, что график получился бы абсолютно таким же, так как начальное состояние и правила перехода никак не изменились. Однако когда он это сделал, получилось нечто неожиданное. На графике ниже синяя линия отвечает за новый набор параметров.

То есть вначале оба графика идут очень близко, различий почти нет, но затем новая траектория все более отдаляется от старой, начиная вести себя по-другому.

Как выяснилось, причина парадокса крылась в том, что в памяти компьютера все данные хранились с точностью до шестого знака после запятой, а выводились с точностью до третьего. То есть микроскопическое изменение параметра привело к огромному различию в траекториях системы.

Это была первая детерминированная система, обладающая таким свойством. Эдвард Лоренц дал ей название «Эффект бабочки».

Этот пример показывает нам, что иногда события, кажущиеся нам неважными, в конечном итоге имеют огромное воздействие на исходы. Поведение таких систем невозможно предсказать, но они и не являются хаотическим в прямом смысле этого слова, ведь они детерминированы.

Более того, траектории данной системы обладают структурой. В трехмерном пространстве множество всех траекторий выглядит так:

Что символично, оно похоже на бабочку.

Эмерджентность

Томас Шеллинг, американский экономист, рассматривал карты распределения расовых классов в различных городах Америки, и наблюдал следующую картину:

Это карта Чикаго и здесь разными цветами изображены места проживания людей различных национальностей. То есть в Чикаго, как и в других городах Америки, присутствует довольно сильная расовая сегрегация.

Какие выводы мы можем из этого сделать? Первыми в голову приходят: люди нетолерантны, люди не принимают и не хотят жить с людьми, которые отличаются от них. Но так ли это?

Томас Шеллинг предложил следующую модель. Представим город в виде клетчатого квадрата, в клетках живут люди двух цветов (красные и синие).

Тогда почти у каждого человека из этого города есть 8 соседей. Выглядит это как-то так:

При этом если у человека меньше 25% соседей того же цвета, то он случайным образом переезжает в другую клетку. И так продолжается до тех пор, пока каждого жителя не устраивает его положение. Жителей этого города совсем нельзя назвать нетолерантными, ведь им нужно всего лишь 25% людей таких же как они. В нашем мире их назвали бы святыми, настоящим примером терпимости.

Однако если запустить процесс переездов, то из случайного расположения жителей выше, мы получим следующую картину:

То есть мы получим расово сегрегированный город. Если же вместо 25%, каждый житель будет хотеть хотя бы половину соседей таких же как он, то мы получим практически полную сегрегацию.

При этом данная модель не учитывает такие вещи, как наличие локальных храмов, магазинов с национальной утварью и так далее, которые также увеличивают сегрегацию.

Мы привыкли объяснять свойства системы свойствами ее элементов и наоборот. Однако для сложных систем это зачастую приводит нас к неверным выводам, ведь, как мы видели, поведение системы на микро и макро уровнях может быть противоположным. Поэтому зачастую спустившись на микро уровень, мы стараемся сделать как лучше, а получается как всегда.

Такое свойство системы, когда целое не может быть объяснено суммой элементов, называется эмерджентностью.

Самоорганизация и адаптивные системы

Пожалуй, самым интересным подклассом сложных систем являются адаптивные системы, или системы, способные к самоорганизации.

Самоорганизация означает, что система меняет свое поведение и состояние, в зависимости от изменений во внешнем мире, она адаптируется к изменениям, постоянное преображаясь. Такие системы повсюду, практически любая социально-экономическая или биологическая, ровно как комьюнити любого продукта, являются примерами адаптивных систем.

А вот видео с щенками.

Сначала система находится в хаосе, но при добавлении внешнего стимула она упорядочивается и появляется довольно милое поведение.

Поведение муравьиного роя

Поведение муравьиного роя при поиске еды является прекрасным примером адаптивной системы, построенной на простых правилах. При поиске еды, каждый муравей блуждает случайным образом, пока не найдет еду. Найдя еду насекомое возвращается домой, отмечая пройденный путь феромонами.

При этом вероятность выбора направления при блуждании пропорциональна количеству феромона (силе запаха) на данном пути, а со временем феромон испаряется.

Эффективность муравьиного роя настолько высока, что похожий алгоритм используется для нахождения оптимального пути в графах в реальном времени.

При этом поведение системы, описывается простыми правилами, каждое из которых критически важно. Так случайность блуждания позволяет находить новые источники питания, а испаряемость феромона и привлекательность пути, пропорциональное силе запаха, позволяет оптимизировать длину маршрута (на коротком пути, феромон будет испаряться медленнее, поскольку новые муравьи будут добавлять свой феромон).

Адаптивное поведение всегда находится где-то между хаосом и порядком. Если хаоса слишком много, то система реагирует на любое, даже незначимое, изменение и не может адаптироваться. Если же хаоса слишком мало, то в поведении системы наблюдается стагнация.

Я наблюдал это явление во многих командах, когда наличие четких должностных инструкций и жестко регламентированных процессов делало команду беззубой, и любой шум вовне выбивал ее из колеи. С другой стороны, отсутствие процессов приводил к тому, что команда действовала неосознанно, не накапливала знания и поэтому все ее несинхронизированные усилия не вели к результату. Поэтому построение такой системы, а именно в этом задача большинства профессионалов в любой динамической сфере, является своего рода искусством.

Для того, чтобы система была способна к адаптивному поведения необходимо (но не достаточно):

  • Открытость . Закрытая система не может адаптироваться по определению, поскольку она ничего не знает о внешнем мире.
  • Наличие положительных и отрицательных обратных связей . Отрицательные обратные связи позволяют системе оставаться в выгодном состоянии, так как они уменьшают реакцию на внешний шум. Однако, адаптация невозможно и без положительных обратных связей, которые помогают системе переходить в новое лучшее состояние. Если говорить об организациях, то за отрицательные обратные связи отвечают процессы, тогда как за положительные - новые проекты.
  • Разнообразие элементов и связей между ними . Эмпирически, увеличение разнообразия элементов и количества связей увеличивает количество хаоса в системе, поэтому любая адаптивная система должна обладать необходимым количеством и того и другого. Также разнообразие позволяет более гладко реагировать на изменения.

Напоследок, хочется привести пример модели, подчеркивающей необходимость разнообразия элементов.

Для колонии пчел очень важно поддерживать постоянную температуру улья. При этом если температуру улья опускается ниже желаемой для данной пчелы, она начинает махать крыльями, чтобы согреть улей. У пчел нет координации и желаемая температура заложена в ДНК пчелы.

Если у всех пчел будет одинаковая желаемая температура, то при ее опускании ниже, все пчелы начнут одновременно махать крыльями, быстро согреют улей, а затем он также быстро остынет. График температуры будет выглядеть так:

А вот другой график, где желаемая температура для каждой пчелы сгенерирована случайно.

Температура улья держится на постоянном уровне, потому что пчелы подключаются к согреванию улья по очереди начиная с самых «мерзнущих».

На этом все, напоследок хочется повторить некоторые идеи, которые обсуждались выше:

  • Иногда вещи не совсем такие, какими они кажутся.
  • Отрицательный фидбек помогает оставаться на месте, положительный - двигаться вперед.
  • Иногда, чтобы сделать лучше нужно добавить хаоса.
  • Иногда для сложного поведения достаточно простых правил.
  • Цените разнообразие, даже если вы не пчела.

Кибернетика Винера

Тектология Богданова

А.А. Богданов «Всеобщая организационная наука (тектология)», т.1 - 1911 г., т.3 - 925 г.

Тектология должна изучать общие закономерности организации для всех уровней. Все явления - непрерывные процессы организации и дезорганизации.

Богданову принадлежит ценнейшее открытие, что уровень организации тем выше, чем сильнее свойства целого отличаются от простой суммы свойств его частей.

Особенностью тектологии Богданова является то, что основное внимание уделяется закономерностям развития организации, рассмотрению соотношений устойчивого и изменчивого, значению обратных связей, учету собственных целей организации, роли открытых систем. Он подчеркивал роли моделирования и математики как потенциальных методов решения задач тектологии.

Н. Винер «Кибернетика», 1948 г.

Наука об управлении и связи в животных и машинах.

"Кибернетика и общество‘. Н.Винер анализирует с позиций кибернетики процессы, происходящие в обществе.

Первый международный конгресс по кибернетике - Париж, 1966 г.

С кибернетикой Винера связаны такие продвижения, как типизация моделей систем, выявление особого значения обратных связей в системе, подчеркивание принципа оптимальности в управлении и синтезе систем, осознание информации как всеобщего свойства материи и возможности ее количественного описания, развитие методологии моделирования вообще и, в особенности идеи математического эксперимента с помощью ЭВМ.

Кибернетика - это наука об оптимальном управлении сложными динамическими системами (А.И. Берг)

Кибернетика - это наука о системах, воспринимающих, хранящих, перерабатывающих и использующих информацию (А.Н. Колмогоров)

Параллельно, и как бы независимо, от кибернетики прокладывался еще один подход к науке о системах - общая теория систем.

Идея построения теории, приложимой к системам любой природы, была выдвинута австрийским биологом Л. Берталанфи.

Л. Берталанфи ввел понятие открытой системы и теории, приложимой к системам любой природы. Термин «общая теория систем» употреблял устно в 30-х годах, после войны – в публикациях.

Один из путей реализации своей идеи Берталанфи видел в том, чтобы отыскивать структурное сходство законов, установленных в различных дисциплинах, и, обобщая их, выводить общесистемные закономерности.

Одним из важнейших достижений Берталанфи считается введение им понятия открытой системы.

В отличие от винеровского подхода, где изучаются внутрисистемные обратные связи, а функционирование систем рассматривается просто как отклик на внешнее воздействие, Берталанфи подчеркивает особое значение обмена веществом, энергией и информацией с открытой средой.



Отправной точкой общей теории систем как самостоятельной науки можно считать 1954г., когда было организовано общество содействия развитию общей теории систем.

Свой первый ежегодник "Общие системы" общество опубликовало в 1956г.

В статье, помещенной в первом томе ежегодника, Берталанфи указал причины появления новой отрасли знания:

· Существует общая тенденция к достижению единства различных естественных и общественных наук. Такое единство может быть предметом изучения ОТС.

· Эта теория может быть важным средством формирования строгих теорий в науках о живой природе и обществе.

Развивая объединяющие принципы, которые имеют место во всех областях знания, эта теория приблизит нас к цели - достижению единства науки.
Все это может привести к достижению необходимого единства научного образования.

Ампер - физик, Трентовский - философ, Федоров - геолог, Богданов - медик, Винер - математик, Берталанфи - биолог.

Это еще раз указывает на положение общей теории систем - в центре человеческих знаний. По степени общности Дж. ван Гиг ставит общую теорию систем на один уровень с математикой и философией.

Близко к ОТС на дереве научного знания расположены другие науки, занимающиеся изучением систем: кибернетика, телеология, теория информации, инженерная теория связи, теория ЭВМ, системотехника, исследование операций и сопряженные с ними научные и инженерные направления.

2. Определение понятия «система», предмет теории систем.

Система - множество элементов, находящихся в отношениях и связях друг с другом, которое образует определенную целостность, единство.

Все определения можно разделить на три группы.

Три группы определений:

— комплекс процессов и явлений, а также связей между ними, существующий объективно, независимо от наблюдателя;

— инструмент, способ исследования процессов и явлений;

— компромисс между двумя первыми, искусственно создаваемый комплекс элементов для решения сложной задачи.

— Первая группа

Задача наблюдателя - выделить систему из окружающей среды, выяснить механизм функционирования и, исходя из этого, воздействовать на нее в нужном направлении. Здесь система - объект исследования и управления.

— Вторая группа

Наблюдатель, имея некоторую цель, синтезирует систему, как абстрактное отображение реальных объектов. Система - совокупность взаимосвязанных переменных, представляющих характеристики объектов данной системы (совпадает с понятием модели).

— Третья группа

Наблюдатель не только выделяет систему из среды, но и синтезирует ее. Система - реальный объект и одновременно абстрактное отображение связей действительности (системотехника).

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

хорошую работу на сайт">

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

МИНОБРНАУКИ РОССИИ

Федеральное государственное автономное образовательное

учреждение высшего профессионального образования

"ЮЖНЫЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ"

геолого-географический факультет

Концепции современного естествознания

Часть 3

Общая теория систем

Методическая разработка для самостоятельной работы

для студентов 2 курса

специальности 100201 «Туризм»

И.Ф. Черкашина

Ростов-на-Дону 2011

1. Роль и место системного подхода в естествознании

Слово "система" в переводе с греческого означает "целое, составленное из частей". Эти части называются ""элементами" Последнее слово -- латинский эквивалент греческого слова "стихия" (огонь, воздух, вода, земля, см. лекцию № 3), т. е. "первоначало".

В современном научном понимании "система -- единое целое, представляющее совокупность взаимосвязанных элементов". Имеются и другие определения "системы". Так, отечественный науковед В. Н. Садовский приводит 34 определения слова "система". Поэтому из-за широты понятия "системы" общепринятого научного определения, что такое система, пока нет. Фактически любой природный объект является системой: он состоит по крайней мере из элементарных частиц.

П римеры систем:

1. Солнечная система -- совокупность планет и других небесных тел, находящихся в сфере притяжения Солнца.

Организм человека -- система клеток, органов, функциональных систем в составе тела человека.

Компьютер -- совокупность частей (системный блок, клавиатура, дисплей, процессор, блок памяти и др.), служащих для выполнения сложных логико-математических действий.

Учебный институт -- учреждение, состоящее из факультетов, кафедр, преподавателей, студентов, помещений, оборудования, вспомогательного персонала и предназначенное для целей высшего образования.

5.Биогеоценоз -- система растительных, животных и микроорганизмов

совместно с почвенно-климатическими условиями обитания.

Любую систему можно изобразить с помощью чертежа (схемы), отражающего основные элементы и связи между ними

Из приведенных примеров видно, что системность как понятие шире, чем рамки естествознания, она относится как к природе (в том числе дикой), так и к науке и культуре в целом. Самой большой системой, очевидно, является Вселенная.

В свою очередь системный подход (не только в рамках естествознания) объединяет в единое целое системный метод и общую теорию систем .

"Ясно, что мир представляет собой единую систему, т. е. связное целое". Ф. Энгельс

2. Системные метод ы

Этот метод научного познания в своих основных чертах известен с глубокой древности. Он возник одновременно с наукой как системой знаний о закономерностях изучаемых явлений и был известен в Древней Греции в эпоху античности. Системный взгляд на мир в целом и его отдельные части (т. е. системная концепция) встречается у Платона , герой произведения которого -- профессор Тимей -- говорит о мировом теле как о живом организме. Аналогично смотрел на мир и Диоген . Пифагор считал мир гармонической системой чисел и их отношений. Но особенно развил системный метод в своих работах Аристотель. Он полагал , что

"под элементами понимают предельные части, на которые делимы тела, но которые уже не делимы на другие, отличающиеся от них по виду".

Аристотеля можно считать создателем системолог и и -- науки, изучающей явления с системной точки зрения. Он, как известно, в наибольшей степени систематизировал достижения других греческих ученых, а систему мира Платона--Евдокса (гомоцентрических сфер) довел до высшего совершенства.

В позднейшие эпохи системные взгляды (концепции) в естествознании не исчезали, а передавались от поколения к поколению ученых. Французский энциклопедист Поль Гольбах (1723--1789). В 1770 г. в труде "Система природы" подробно изложил первую физическую картину мира (механическую), которая была разработана Ньютоном и Лапласом.

Таким образом, системный метод в естествознании оказался очень продуктивным, хотя и не абсолютным, годным на все случаи жизни.

И системный метод, как и любой другой, имеет определенные ошибки (методические погрешности). Часто системный метод называют системным анализом.

3 . Общая теория систем

В отличие от системного метода, возникшего с появлением науки, общая теория систем (ОТС) является продуктом современной эпохи. При этом ОТС следует дифференцировать с системологией . Последнюю можно считать разделом методологии -- науки о методах, тогда как ОТС является научным результатом (достижением) системного анализа, т.е. научной теорией , воплотившей результаты предыдущих системных исследований.

Концепция общесистемного подхода была сформулирована австрийским биологом Людвигом фон Берталанфи в 20-х гг. XX в., хотя у него были и предшественники, в том числе -- отечественный естествоиспытатель, экономист, философ, ученый-управленец Александр Александрович Богданов (1873-- 1928).

В 1927 г. Берталанфи опубликовал книгу "Организмическая концепция", в которой обосновал необходимость исследования не только отдельных органов и частных систем биологического организма (например, нервной системы, мышечной, костной и т. д.), но и целостного организма. Однако это еще не было ОТС. Концепция ОТС, относящаяся к системам любой природы: биологическим, инженерным, общественным и др., главным образом сложным, была утверждена Берталанфи, тогда еще доцентом Венского университета, в своих научных лек циях, прочитанных в Чикагском университете (США) в 1938 г. Текст лекций, вначале принятых прохладно, был позднее напечатан в США в 1945 и 1949 г.

Руководящая идея Берталанфи состояла в том, что сложные системы различной природы, имеющие совершенно разный состав и устройство (например, биологические организмы, отрасли промышленности, города, аэропорты ит. п.), функционируют по общим законам . И, следовательно, знания, полученные при исследовании одних систем, можно переносить на изучение других систем совершенно иной природы. Таким образом, Берталанфи в своих исследованиях воспользовался методом аналогии .

Такое достижение имело важные для естественных и гуманитарных наук последствия. В первую очередь Берталанфи смог помочь биологии, занимающейся системами самого сложного характера. Он проложил путь к использованию в изучении живого методов и результатов физики, химии, математики (особенно математического моделирования), а в будущем -- геологии и космологии. Такие достижения вышли далеко за рамки биологии и сформировали общенаучный системный подход.

Системный подход утвердился сначала в биологии, затем перешел в ее прикладную часть -- медицину (сначала в психиатрию, потом вовсе другие разделы), в конце концов обосновался в военном деле, космонавтике, языкознании, управлении производством, культурологии, истории и, разумеется, во всех отраслях естествознания. Таким образом, к середине 50-х г. XXв. системный подход в науке стал всеобщим, а в СССР продуктивная разработка научных и хозяйственных применений этого подхода началась с 60-х годов XX в. В настоящее время системные исследования успешно развиваются во всем мире, хотя эйфория от якобы неограниченных возможностей ОТС уже прошла.

Для знакомства с главными положениями ОТС необходимо ввести основные понятия, относящиеся к ней. Кроме приведенного понятия СИСТЕМА, в ОТС используются следующие понятия (определения):

1)ЭЛЕМЕНТ -- составная часть системы, которая в условиях рассмотрения считается неделимой. Элементы могут быть одинаковыми или различными.

Примеры: атомы в молекуле; студенты в группе; планеты, кометы, метеоры в Солнечной системе; аксиомы, постулаты, теоремы, уравнения, леммы в математике; и др.

2)ПОДСИСТЕМА -- составная часть системы, которая в условиях рассмотрения считается делимой на элементы, по отношению к которым она выступает как система.

Примеры: сердечно-сосудистая система в организме; центр управления полетами на космодроме; отрасль добывающей промышленности; студенческая группа и др.

Подсистем в системе может быть много, они могут быть как "вложенными" одна в другую, так и существовать по отдельности. Но в обоих таких случаях взаимоотношения между элементами, подсистемами и системой всегда носят характер соподчиненности, т. е. "низшее" (элементы) подчиняются "более высокому" (подсистема), которое в свою очередь подчиняется "высшему" (система). При этом вводится понятие уровень организации. Последовательность уровней соподчиненности в системе называется "иерархией" греч. «священная власть»). Последний термин проник в ОТС в XX в. из церковно-христианской терминологии, существовавшей еще в V в. н. э.

3)СРЕДА (внешняя, окружающая) -- окружение системы (обычно вещественное), в котором она пребывает и с которым в той или иной степени взаимодействует.

Поскольку среда окружает систему, ее название часто употребляется в сочетании со словами "окружающая", "внешняя".

Примеры: межклеточная жидкость, окружающая биологические клетки; вакуум по отношению к элементарным частицам; растворитель по отношению к растворенному веществу; производственный цех по отношению к работающим; и др.

Часто употребляется и сводный термин внутренняя среда . Его относят к среде, размещающейся внутри системы (подсистемы). Например, кровь -- одна из внутренних сред организма, но она же -- внешняя среда для элементов крови: эритроцитов, лейкоцитов, тромбоцитов и др. Таким образом, принципиального различия между внешней и внутренней средами нет, все зависит от условий рассмотрения . Уже упоминавшийся А. А. Богданов в труде "Всеобщая организационная наука" (1927) справедливо отмечал:

"Болезнетворные бактерии размножаются внутри организма, но функционально они -- внешняя для него среда".

Более того, нет также принципиального различия между системой и средой: все опять же зависит от точки отсчета. Среда может рассматриваться как система , тогда бывшая система станет средой. Например, вулканическая лава в сопле вулкана может рассматриваться как система, тогда сопло будет средой. Если же лаву считать средой, тогда сопло станет системой.

Взаимоотношения системы, подсистемы, внешней и внутренней сред и элементов схематически представлены на рис.1, где для упрощения элементы показаны только в рамках одной подсистемы из шести;

Рис. 1. Схема взаимоотношений в системе

4) СОСТАВ -- совокупность элементов системы. Он может быть: а) качественным , когда указывается только качественная определенность элементов; например: вратарь, защитники, полузащитники, нападающие в футбольной команде; ионы натрия и хлора в кристалле поваренной соли; б) количественным , когда задается не только качественная определенность элементов, но и их количественное соотношение; например: в физиологическом растворе 0,9%-ной растворенной поваренной соли, 99,1% -- воды; в золоте 958-й пробы -- 95,8% золота, 2,0% серебра и2,2% меди;

5) СТРУКТУРА -- взаиморасположение элементов в системе, т.е. фактически внутреннее строение системы в отличие от формы -- внешнего строения. Примеры: структуры атома, молекулы, клетки организма, строение Солнечной системы, прибора и др.

Для установления структуры объектов используется структурный анализ. Он может быть разрушающим (изготовление срезов биологических тканей для микроскопии, изготовление шлифов геологических образцов и др.) или неразрушающим (рентгеноскопия грудной клетки, "просвечивание" ультразвуком железнодорожных рельсов для выявления скрытых трещин и т. д.). Выявленную структуру можно регистрировать (например, на фотопленке) или описывать схематически (рис. 2).

Рис. 2. Различные способы представления структуры молекулы воды

Структура совместно с составом системы определяет ее основные свойства (физические, химические, биологические). При одном и том же составе разных систем их структуры могут отличаться, и это влечет изменение свойств. Например, одни и те же атомы углерода С, включенные в молекулярную структуру графита или алмаза, дают совершенно разные свойства этих веществ (цвет, прочность и т. д.);

6) СОСТОЯНИЕ -- интегральная характеристика проявления в данный момент времени свойств системы, зависящая от всех особенностей ее структуры и состава. Примеры: состояние солнечной активности в конкретный день; состояние газа в определенном объеме в данный момент времени; предстартовое психологическое состояние спортсмена; болезненное состояние человека в период эпидемии; и др. Для описания состояния существует совокупность характеристик состояния и параметров состояния. Характеристики состояния отражают как бы его характер в данный момент. К таким характеристикам относят:

равновесность и неравновесность состояния;

устойчивость и неустойчивость равновесия;

статичность и динамичность равновесия;

исходное, промежуточное, конечное и текущее состояние и др.

К параметрам состояния относят определенные величины, числовые значения которых в данный момент достаточны для однозначного определения интегрального состояния системы. Например, для 1 моля идеального газа его состояние однозначна задается с помощью уравнения Клапейрона:

Для данного уравнения параметрами состояния системы являются р, V и Т. Из них только две (любые) являются независимыми, третий параметр однозначно устанавливается из приведенного уравнения. Минимальное число параметров, достаточное для описания состояния системы, называется числом степеней свободы системы. У 1 моля идеального газа (как, впрочем, и у постоянной массы газа определенного химического состава) -- две степени свободы;

7) ПРОЦЕСС -- изменение состояния системы во времени, иногда называемое системным процессом. Примеры: процесс выздоровления больного, химическая реакция (процесс с превращением веществ); физический процесс (без превращения веществ: испарение, плавление и т. д.); внутризвездные процессы; политические процессы; и т. д.

Процесс -- одна из форм движения материи, поэтому более подробно эта характеристика системы будет дана в лекции №9.

4. Классификация систем

Системы классифицируются разнообразными способами, с использованием различных критериев. Некоторые классы систем являются друг от друга независимыми, некоторые -- взаимосвязанными. Рассмотрим классификационные признаки, применяемые в делении систем. 1) По составу системы делятся на:

¦ материальные -- представляющие совокупности материальных объектов:

Примеры; животный мир, растительность, человечество,

транспорт, библиотеки и т. д.

Эти системы могут быть разделены на естественные (природные) и искусственные (созданные человеком). Материальные системы также называют физическими, реальными, вещественными;

¦ идеальные являются продуктами человеческого мышления. Примеры: системы счисления, театральные системы, системы обучения и воспитания, научные теории, религиозные учения и т. д. Эти системы также называют абстрактными, символическими.

2) По поведению во времени системы делятся на:

¦статические -- такие системы, состояние которых с течением времени практически не меняются.

Примеры: пустыни, горы, Солнечная система, газ в закрытом сосуде, церковные каноны и т. д.

Эти системы также называют статичными.

¦динамические -- системы, состояние которых заметно меняется со временем.

Примеры: погода, транспортная ситуация, языки программирования, музыкальное произведение (в исполнении), шахматная партия, химическая реакция и т. д.

Эти системы также называются динамичными.

Четкой границы между статическими и динамическими системами провести нельзя, все зависит от условий рассмотрения и временного масштаба.

В свою очередь динамические системы делятся на:

¦детерминированные , для которых их будущие состояния могут быть точно предсказаны, выведены из предыдущих состояний.

Примеры: Солнечные затмения (взаиморасположения Земли, Луны и Солнца), смена времен года, системы управления транспортом с помощью светофоров, работа заводского станка и т.д.

¦в ероятностные , для которых их будущие состояния не могут быть точно предсказаны, а поддаются только вероятностному прогнозу.

Примеры: броуновское движение (координаты частиц, подвергающихся ~ 1021 ударам молекул в секунду), погода через неделю, оценки большой части студентов на экзаменах, победы в спортивных соревнованиях и т. д.

Вероятностные системы еще называются стохастическими. Обычно биологические системы -- вероятностные.

¦ д етерминированно-хаотические -- это сравнительно новый в науке тип систем, он не является промежуточным (пограничным) для первых двух. Такой тип систем связан со взаимопереходом хаоса и порядка (т. е. детерминированности и стохастичности) и будет подробно рассмотрен в лекции № 13. 3) По взаимодействию со средой системы делятся на: 4- закрытые -- такие системы, которые не обмениваются с окружающей их средой веществом и полем, точнее таким обменом в условиях рассмотрения можно пренебречь.

Примеры: консервативные механические системы (сохраняющие массу и энергию), чай в термосе, стабильные галактики в космическом вакууме, подземные нефтехранилища и т. п.

¦ открытые -- в противоположность первым они обмениваются с окружающей средой веществом и полем.

Примеры: все живые организмы, моря и океаны, почвы, Солнце, системы связи, производственные предприятия, общественные объединения и т. д.

Закрытые системы также называются замкнутыми , или изолированными , а открытые -- незамкнутыми , или неизолированными. Кроме того, по современным уточненным научным концепциям естествознания в качестве обменных агентов между системой и средой следует указывать не вещество и поле, а вещество, энергию и информацию .

Наконец, следует обратить внимание, что чисто закрытых систем в природе и обществе не бывает, хотя бы из диалектических соображений. Поэтому закрытые системы -- это пример умозрительной научной модели.

¦простые -- системы, состоящие из сравнительно небольшого числа элементов и несложных взаимоотношений между ними, обычно это технические системы.

Примеры: часы, фотоаппарат, утюг, мебель, инструментарий, веник, книга и т. д.;

¦сложные -- системы, состоящие из большого числа элементов и сложных взаимоотношений между ними; такие системы занимают главное место в системологии и ОТС.

Примеры: все биологические системы, начиная от клеток и кончая сообществами организмов, производственные объединения, государства, нации, галактики, сложные технические системы: компьютеры, боевые ракеты, атомные электростанции и т. д.

Сложные системы также называются "большими" или "очень большими" системами. В подавляющем числе случаев они являются одновременно и вероятностными системами (см. выше), но иногда встречаются и детерминированные, высокоорганизованные системы: врожденный оборонительный рефлекс у кошки, положение планет, астероидов Солнечной системы, военный парад и т. д.

¦ Целенаправленные -- системы, способные моделировать и прогнозировать ситуацию и избирать способ поведения (изменения состояния): за счет восприятия и распознавания внешнего воздействия, способности анализировать и сопоставлять его с собственными возможностями и выбирать тот или иной вариант поведения для достижения цели.

Примеры: луноход, марсоход, роботы-манипуляторы, пчелиный рой, стада животных, рыбные косяки, самонаводящиеся боевые ракеты, стаи перелетных птиц и т. д.

Целенаправленные системы обладают некоторой совокупностью "знаний" о себе и о среде, иначе говоря, им присущ тезаурус (от греч. «сокровищница») -- запас сведений о действительности, присущий индивидууму (или сообществу индивидуумов), с возможностью воспринимать новые сведения и накапливать опыт. Целенаправленные системы обычно обладают способностью, выражаясь философским языком, опережающего отражения действительности. Например, деревья накапливают влагу в преддверии засухи, птицы строят гнезда еще до появления будущих птенцов и т. д.

¦Нецеленаправленные -- системы, не обладающие рассмотренными свойствами; их большинство, и примеры их очевидны.

Среди целенаправленных систем выделяется класс, называемый

¦ самоорганизующиеся -- системы, способные самостоятельно изменять свою структуру (иногда и состав), степень сложности с целью лучшего приспособления (адаптации) к изменившимся условиям среды.

Примеры: выработка организмом защитных антител при попадании в него инородных белков -- антигенов, например, с болезнетворными бактериями; изменения в организме защитного характера в борьбе с болезнью, соединения птиц в стаи определенного вида перед длительным перелетом, мобилизация своих умственных способностей и режима поведения студентов перед экзаменами и т. д.

Самоорганизующиеся системы также называются саморегулирующимися, перестраивающимися .

5. Связи -- важнейшее понятие общей теории систем

Связи -- характеристики взаимодействия элементов в системе и реализации ее структуры.

Это основное понятие ОТС, при отсутствии (разрыве, расторжении) связей система как целое перестает существовать и распадается на элементы: компьютер превращается в набор радиодеталей, дом превращается в набор кирпичей, живой организм-- в набор химических элементов (со временем после смерти) и т. д.

Именно присутствие в системе связей и обусловливает ее новые свойства, которых нет у элементов системы, даже у их суммы. Такой сверхсуммарный эффект у элементов, соединенных в систему, называется системным эффектом, или эффектом сборки, или эмерджентностью (от англ. «появление нового»).

Примеры системного эффекта:

а)в физике: ядро атома обладает пониженной энергией в сравнении с энергией совокупности нуклонов -- элементов этого ядра;

б)в химии: химические свойства молекул воды (Н 2 0) отличаются от химических свойств водорода (Н) и кислорода (О); последние без химического соединения ничего

не растворяют, зато образуют "гремучую смесь";

в)в биологии: молекулы фосфорной кислоты, сахара (дезоксирибозы), азотистых оснований, находясь разрозненно и беспорядочно в растворенном состоянии в пробирке, не способны к зарождению и развитию живого организма, а соединенные в молекулу ДНК, помещенную в живую клетку, -- способны. связь естествознание молекула структура

Сверхсуммарные свойства элементов в системе, т. е. системный эффект, отличает систему от простой совокупности элементов, для которой выполняется принцип суперпозиции, т. е. независимого проявления свойств элементов (каждый ведет себя так, как если бы других не было) и получения чисто суммарного эффекта от их действия (геометрическое сложение векторов сил, скоростей, ускорений и т. д. -- в механике; алгебраическое сложение световых колебаний в оптике и т. д.).

Таким образом, связи между элементами в системе обусловливают их взаимовлияние друг на друга, при этом свойства и характеристики элементов изменяются: одни свойства утрачиваются, другие приобретаются. Это было известно Аристотелю еще в IV в. до н. э. :

"Рука, отделенная физически от тела человека -- это уже не рука человека".

Классификация связей

Существует многообразная классификация связей между элементами, не уступающая по численности классификации систем (см. выше), однако более сложная по содержанию. Поэтому в данном разделе будут рассмотрены главные типы связей с иллюстрацией их примерами:

1) По виду и назначению связи делятся на:

генетические -- такие, когда один элемент (элементы) являются родоначальником другого (других).

Примеры : родители и дети; исходные вещества и продукты химических реакций; ряды радиоактивности в атомной физике; морфогенез осадочных пород в геологии; последовательности звездных превращений в астрономии и т. д.;

связи взаимодействия -- такие, когда элементы одновременно взаимодействуют, влияя друг на друга.

Примеры: нервы и мышцы в органах, хищники и жертвы в местах совместного обитания, реки, моря и океаны земной поверхности, инженеры, техники и рабочие на производстве и т.д.;

связи управления -- такие, когда одни элементы системы управляют поведением других элементов.

Примеры : центральная нервная система и периферические органы; правила дорожного движения и транспортные потоки; руководители и подчиненные в организации; и т. д.;

связи преобразования -- такие, когда одни элементы влияют на переход системы из одного состояния в другое или от одной структуры к другой.

Примеры : катализаторы в химических реакциях; нагреватели при плавлении веществ; землетрясения в населенных пунктах; обучающие системы в повышении квалификации и т. д. Границы между перечисленными типами связей расплывчаты, и конкретные связи не всегда можно отнести к определенному классу.

2) По степени действия связи делятся на:

а) жесткие -- такие, при которых действие связи жестко предопределено и результат действия одного элемента на другой однозначен.

а) б)

Примеры : механические связи в швейной машине, швы между костями черепа человека, клеевые соединения обуви, грибковые наросты на деревьях, угольные пласты под землей, корневая система растений в почве и т. д.;

б) гибкие -- такие, при которых действие связи допускает некоторую свободу вариантов поведения связанных элементов.

Примеры : суставные сочленения, мышечные группы, океанские течения, подвесные мосты, книжные переплеты, фиксация ледников и снежных пластов в горах и т. д.

Не следует думать, что жесткие связи обязательно реализуются посредством жестких механических узлов, канатов, цепей, твердых образований. Гравитационная связь (например, между Солнцем и Землей, Землей и Луной и т. д.) также является жесткой, хотя и "невидимой". То же можно сказать и об электромагнитной связи внутри атомов и молекул.

Большое значение в биологии (зоологии) имеют так называемые пищевые связи и даже пищевые цепи. Пчелы питаются только нектаром, коровы -- травой (жесткая связь), рыбы и человек -- практически всеядны (гибкая связь).

3) По направленности связи делятся на:

¦ прямые -- такие, при которых один элемент влияет на другой, не испытывая при этом влияния со стороны последнего; обычно первый элемент является господствующим, а второй -- подчиненным.

Примеры: "Приказ командира -- закон для подчиненного", авторитарный стиль руководства; гипнотическое воздействие змеи на грызуна; сход снежной лавины с горы; стрельба по мишени; извержение вулкана; и т. д.;

¦ нейтральные -- такие, у которых нет направленности; обычно они существуют между однотипными элементами и объединяют их в систему.

Примеры: связи между вагонами в поезде; между молекулами в кристалле; между спортсменами в команде; между рядовыми особями в птичьей стае; между нуклонами в ядре атома; и т. д.;

¦обратные -- такие, при которых один элемент действует на другой (прямая связь), испытывая при этом действие второго на себе (обратная связь). Таким образом, в отличие от прямого действия господствующего элемента на подчиненный без обратного влияния (см. выше), здесь обратное влияние возникает. При этом нет обратной связи без прямой.

Примеры : спортивные единоборства, физиологические рефлексы, бильярдные соударения, растворение веществ, трение движения, испарение жидкостей в закрытом сосуде и т. д.

Поскольку обратная связь влияет на элемент -- источник воздействия, то такое влияние может в принципе быть трояким: либо стимулировать воздействие со стороны источника, либо подавлять его, либо не изменять. Последний тип обратной связи практического значения не имеет, его можно исключить из рассмотрения или отнести к разновидности прямой связи (см. выше). Два других типа имеют важное значение и на практике, и в ОТС.

по результативности обратные связи делятся на:

¦положительные обратные связи , при которых обратная связь усиливает воздействие элемента -- источника на приемник воздействия.

Примеры : раскачивание качелей, генерация радиоволн, весеннее таяние снегов (темные прогалины сильнее нагреваются солнцем), лесные пожары, цепные химические реакции (возгорание пороха и т. д.), атомные взрывы, эпилептические припадки, эпидемии гриппа, паника в толпе, кристаллизация в растворах, рост оврагов и др.;

¦отрицательные обратные связи , при которых обратная связь ослабляет воздействие источника на приемник воздействия.

Примеры : зрачковые рефлексы (сужение зрачка при ярком свете, расширение в темноте), увеличение потоотделения в жару, закрытие пор ("гусиная кожа") в холод; терморегуляторы в холодильниках, термостатах, кондиционерах; насыщающие пары газов, запредельное торможение мозга и др.

Следует отметить, что обратные связи играют важнейшую роль в функционировании природных и общественных систем, включая технические системы. Именно они обеспечивают регуляцию, самоподдержание, саморазвитие, выживание, приспособление систем в изменяющихся условиях среды. Наиболее велика роль в этих процессах отрицательных обратных связей, которые позволяют нейтрализовать или существенно сгладить влияние неблагоприятных воздействий среды на систему, особенно живые организмы.

Задание для самостоятельного исследования

· Выберете любую естественную систему (биологическую, химическую, физическую, географическую, экологическую и т.д.) и дайте ей характеристику с позиции ОТС.

· Как можно применить знания ОТС в туризме?

П.О. Липовко . Концепции современного естествознания. Учебник для вузов. --Ростов-на-Дону. Из-во "Феникс", 2004, с.

Берталанфи Л. фон Общая теория систем -- Критический обзор / В кн.: Исследования по общей теории систем.-- М.: Прогресс, 1969. С. 23--82. На английском языке: L. von Bertalanffy , General System Theory -- A Critical Review // «General Systems», vol. VII, 1962, p. 1--20.

Богданов А. А. Тектология: Всеобщая организационная наука.-- М.: Финансы, 2003.

(Термин «тектология» происходит от греч. фЭчфщн -- строитель, творец и льгпт -- слово, учение).

Лекторский В. А., Садовский В. Н . О принципах исследования систем // Вопросы философии, № 8, 1960, сс.67-79.

Седов Е. А . Информационно-энтропийные свойства социальных систем // Общественные науки и современность, № 5, 1993, сс.92-100. См. также: Цирель С . «QWERTY-эффекты», «Path Dependence» и закон иерархических компенсаций // Вопросы экономики, № 8, 2005, сс.19-26.

Садовский В. Н . Людвиг фон Берталанфи и развитие системных исследований в XX веке. В кн.: Системный подход в современной науке. -- М.: «Прогресс-Традиция», 2004, С.28.

Размещено на Allbest.ru

...

Подобные документы

    Синергетика как теория самоорганизующихся систем в современном научном мире. История и логика возникновения синергетического подхода в естествознании. Влияние этого подхода на развитие науки. Методологическая значимость синергетики в современной науке.

    реферат , добавлен 27.12.2016

    Возникновение и развитие науки или теории. Предмет и метод теории систем. Этапы становления науки. Закономерности систем и закономерности целеобразования. Поиск подходов к раскрытию сложности изучаемых явлений. Концепции элементаризма и целостности.

    реферат , добавлен 29.12.2016

    Понятие общей теории относительности - общепринятой официальной наукой теории о том, как устроен мир, объединяющей механику, электродинамику и гравитацию. Принцип равенства гравитационной и инертной масс. Теория относительности и квантовая механика.

    курсовая работа , добавлен 17.01.2011

    Понятие системного метода и этапы его исторического формирования. Строение и структура систем, порядок взаимодействия ее элементов, классификация и разновидности. Метод и перспективы системного исследования, назначение математического моделирования.

    контрольная работа , добавлен 28.10.2009

    Мир живого как система систем. Открытость - свойство реальных систем. Открытость. Неравновесность. Нелинейность. Особенности описания сложных систем. Мощное научное направление в современном естествознании - синергетика.

    реферат , добавлен 28.09.2006

    Системология как наука о системах. Примеры систем и их элементов. Целесообразность как назначение, главная функция, которую она выполняет. Структура системы и порядок связей между ее элементами, варианты иерархии. Примеры системного подхода в науке.

    презентация , добавлен 14.10.2013

    Современное понятие "открытая система". Проблема анализа целостных свойств открытых систем в зависимости от времени. Общность процессов типа 1/f (процессов типа фликкер-шума) для всех систем. Старое и новое математическое описание процессов типа 1/f.

    курсовая работа , добавлен 23.11.2011

    Ткань - частная система органа, состоящая из клеток и внеклеточных элементов с общей эпигеномной наследственностью. Эмбриональный гистогенез: детерминация, пролиферация, дифференциация, интеграция и адаптация клеточных систем. Общая классификация тканей.

    реферат , добавлен 23.12.2012

    Концепция системного подхода, анализ взаимодействия элементов данной системы между собой и с элементами надсистемы. Концепция самоорганизации объекта и ее структурные части, характерные четы и особенности. Концепция системного подхода к решению ситуации.

    реферат , добавлен 24.07.2009

    Характеристика основных положений общей теории химической эволюции и биогенеза А.П. Руденко. Этапы химической эволюции. Географическая оболочка земли. Понятие зональных, континентальных и океанических комплексов. Динамические и статистические законы.