Измерение физических величин. Абсолютная и относительная погрешность вычислений

Абсолютную и относительную погрешность используют для оценки неточности в производимых расчетах с высокой сложностью. Также они используются в различных измерениях и для округления результатов вычислений. Рассмотрим, как определить абсолютную и относительную погрешность.

Абсолютная погрешность

Абсолютной погрешностью числа называют разницу между этим числом и его точным значением.
Рассмотрим пример : в школе учится 374 ученика. Если округлить это число до 400, то абсолютная погрешность измерения равна 400-374=26.

Для подсчета абсолютной погрешности необходимо из большего числа вычитать меньшее.

Существует формула абсолютной погрешности. Обозначим точное число буквой А, а буквой а – приближение к точному числу. Приближенное число – это число, которое незначительно отличается от точного и обычно заменяет его в вычислениях. Тогда формула будет выглядеть следующим образом:

Δа=А-а. Как найти абсолютную погрешность по формуле, мы рассмотрели выше.

На практике абсолютной погрешности недостаточно для точной оценки измерения. Редко когда можно точно знать значение измеряемой величины, чтобы рассчитать абсолютную погрешность. Измеряя книгу в 20 см длиной и допустив погрешность в 1 см, можно считать измерение с большой ошибкой. Но если погрешность в 1 см была допущена при измерении стены в 20 метров, это измерение можно считать максимально точным. Поэтому в практике более важное значение имеет определение относительной погрешности измерения.

Записывают абсолютную погрешность числа, используя знак ±. Например , длина рулона обоев составляет 30 м ± 3 см. Границу абсолютной погрешности называют предельной абсолютной погрешностью.

Относительная погрешность

Относительной погрешностью называют отношение абсолютной погрешности числа к самому этому числу. Чтобы рассчитать относительную погрешность в примере с учениками, разделим 26 на 374. Получим число 0,0695, переведем в проценты и получим 6%. Относительную погрешность обозначают процентами, потому что это безразмерная величина. Относительная погрешность – это точная оценка ошибки измерений. Если взять абсолютную погрешность в 1 см при измерении длины отрезков 10 см и 10 м, то относительные погрешности будут соответственно равны 10% и 0,1%. Для отрезка длиной в 10 см погрешность в 1см очень велика, это ошибка в 10%. А для десятиметрового отрезка 1 см не имеет значения, всего 0,1%.

Различают систематические и случайные погрешности. Систематической называют ту погрешность, которая остается неизменной при повторных измерениях. Случайная погрешность возникает в результате воздействия на процесс измерения внешних факторов и может изменять свое значение.

Правила подсчета погрешностей

Для номинальной оценки погрешностей существует несколько правил:

  • при сложении и вычитании чисел необходимо складывать их абсолютные погрешности;
  • при делении и умножении чисел требуется сложить относительные погрешности;
  • при возведении в степень относительную погрешность умножают на показатель степени.

Приближенные и точные числа записываются при помощи десятичных дробей. Берется только среднее значение, поскольку точное может быть бесконечно длинным. Чтобы понять, как записывать эти числа, необходимо узнать о верных и сомнительных цифрах.

Верными называются такие цифры, разряд которых превосходит абсолютную погрешность числа. Если же разряд цифры меньше абсолютной погрешности, она называется сомнительной. Например , для дроби 3,6714 с погрешностью 0,002 верными будут цифры 3,6,7, а сомнительными – 1 и 4. В записи приближенного числа оставляют только верные цифры. Дробь в этом случае будет выглядеть таким образом – 3,67.

Что мы узнали?

Абсолютные и относительные погрешности используются для оценки точности измерений. Абсолютной погрешностью называют разницу между точным и приближенным числом. Относительная погрешность – это отношение абсолютной погрешности числа к самому числу. На практике используют относительную погрешность, так как она является более точной.

Абсолютная погрешность вычислений находится по формуле:

Знак модуля показывает, что нам без разницы, какое значение больше, а какое меньше. Важно, насколько далеко приближенный результат отклонился от точного значения в ту или иную сторону.

Относительная погрешность вычислений находится по формуле:
, или, то же самое:

Относительная погрешность показывает, на сколько процентов приближенный результат отклонился от точного значения. Существует версия формулы и без домножения на 100%, но на практике я почти всегда вижу вышеприведенный вариант с процентами.

После короткой справки вернемся к нашей задаче, в которой мы вычислили приближенное значение функции с помощью дифференциала.

Вычислим точное значение функции с помощью микрокалькулятора:
, строго говоря, значение всё равно приближенное, но мы будем считать его точным. Такие уж задачи встречаются.

Вычислим абсолютную погрешность :

Вычислим относительную погрешность:
, получены тысячные доли процента, таким образом, дифференциал обеспечил просто отличное приближение.

Ответ : , абсолютная погрешность вычислений , относительная погрешность вычислений

Следующий пример для самостоятельного решения:

Пример 4

в точке . Вычислить более точное значение функции в данной точке, оценить абсолютную и относительную погрешность вычислений.

Примерный образец чистового оформления и ответ в конце урока.

Многие обратили внимание, что во всех рассмотренных примерах фигурируют корни. Это не случайно, в большинстве случаев в рассматриваемой задаче действительно предлагаются функции с корнями.

Но для страждущих читателей я раскопал небольшой пример с арксинусом:

Пример 5

Вычислить приближенно с помощью дифференциала значение функции в точке

Этот коротенький, но познавательный пример тоже для самостоятельного решения. А я немного отдохнул, чтобы с новыми силами рассмотреть особое задание:

Пример 6

Вычислить приближенно с помощью дифференциала , результат округлить до двух знаков после запятой.

Решение: Что нового в задании? По условию требуется округлить результат до двух знаков после запятой. Но дело не в этом, школьная задача округления, думаю, не представляет для вас сложностей. Дело в том, что у нас дан тангенс с аргументом, который выражен в градусах. Что делать, когда вам предлагается для решения тригонометрическая функция с градусами? Например, и т. д.

Алгоритм решения принципиально сохраняется, то есть необходимо, как и в предыдущих примерах, применить формулу

Записываем очевидную функцию

Значение нужно представить в виде . Серьёзную помощь окажет таблица значений тригонометрических функций . Кстати, кто её не распечатал, рекомендую это сделать, поскольку заглядывать туда придется на протяжении всего курса изучения высшей математики.


Анализируя таблицу, замечаем «хорошее» значение тангенса, которое близко располагается к 47 градусам:

Таким образом :

После предварительного анализа градусы необходимо перевести в радианы . Так, и только так!

В данном примере непосредственно из тригонометрической таблицы можно выяснить, что . По формуле перевода градусов в радианы: (формулы можно найти в той же таблице).

Дальнейшее шаблонно:

Таким образом : (при вычислениях используем значение ). Результат, как и требовалось по условию, округлён до двух знаков после запятой.

Ответ:

Пример 7

Вычислить приближенно с помощью дифференциала , результат округлить до трёх знаков после запятой.

Это пример для самостоятельного решения. Полное решение и ответ в конце урока.

Как видите, ничего сложного, градусы переводим в радианы и придерживаемся обычного алгоритма решения.

Приближенные вычисления с помощью полного дифференциала функции двух переменных

Всё будет очень и очень похоже, поэтому, если вы зашли на эту страницу именно этим заданием, то сначала рекомендую просмотреть хотя бы пару примеров предыдущего пункта.

Для изучения параграфа необходимо уметь находить частные производные второго порядка , куда ж без них. На вышеупомянутом уроке функцию двух переменных я обозначал через букву . Применительно к рассматриваемому заданию удобнее использовать эквивалентное обозначение .

Как и для случая функции одной переменной, условие задачи может быть сформулировано по-разному, и я постараюсь рассмотреть все встречающиеся формулировки.

Пример 8

Решение: Как бы ни было записано условие, в самом решении для обозначения функции, повторюсь, лучше использовать не букву «зет», а .

А вот и рабочая формула:

Перед нами фактически старшая сестра формулы предыдущего параграфа. Переменная только прибавилась. Да что говорить, сам алгоритм решения будет принципиально таким же !

По условию требуется найти приближенное значение функции в точке .

Число 3,04 представим в виде . Колобок сам просится, чтобы его съели :
,

Число 3,95 представим в виде . Дошла очередь и до второй половины Колобка:
,

И не смотрите на всякие лисьи хитрости, Колобок есть - надо его съесть.

Вычислим значение функции в точке :

Дифференциал функции в точке найдём по формуле:

Из формулы следует, что нужно найти частные производные первого порядка и вычислить их значения в точке .

Вычислим частные производные первого порядка в точке :

Полный дифференциал в точке :

Таким образом, по формуле приближенное значение функции в точке :

Вычислим точное значение функции в точке :

Вот это значение является абсолютно точным.

Погрешности рассчитываются по стандартным формулам, о которых уже шла речь в этой статье.

Абсолютная погрешность:

Относительная погрешность:

Ответ: , абсолютная погрешность: , относительная погрешность:

Пример 9

Вычислить приближенное значение функции в точке с помощью полного дифференциала, оценить абсолютную и относительную погрешность.

Это пример для самостоятельного решения. Кто остановится подробнее на данном примере, тот обратит внимание на то, что погрешности вычислений получились весьма и весьма заметными. Это произошло по следующей причине: в предложенной задаче достаточно велики приращения аргументов: .

Общая закономерность таков а - чем больше эти приращения по абсолютной величине, тем ниже точность вычислений. Так, например, для похожей точки приращения будут небольшими: , и точность приближенных вычислений получится очень высокой.

Данная особенность справедлива и для случая функции одной переменной (первая часть урока).

Пример 10


Решение: Вычислим данное выражение приближенно с помощью полного дифференциала функции двух переменных:

Отличие от Примеров 8-9 состоит в том, что нам сначала необходимо составить функцию двух переменных: . Как составлена функция, думаю, всем интуитивно понятно.

Значение 4,9973 близко к «пятерке», поэтому: , .
Значение 0,9919 близко к «единице», следовательно, полагаем: , .

Вычислим значение функции в точке :

Дифференциал в точке найдем по формуле:

Для этого вычислим частные производные первого порядка в точке .

Производные здесь не самые простые, и следует быть аккуратным:

;


.

Полный дифференциал в точке :

Таким образом, приближенное значение данного выражения:

Вычислим более точное значение с помощью микрокалькулятора: 2,998899527

Найдем относительную погрешность вычислений:

Ответ: ,

Как раз иллюстрация вышесказанному, в рассмотренной задаче приращения аргументов очень малы , и погрешность получилась фантастически мизерной.

Пример 11

С помощью полного дифференциала функции двух переменных вычислить приближенно значение данного выражения. Вычислить это же выражение с помощью микрокалькулятора. Оценить в процентах относительную погрешность вычислений.

Это пример для самостоятельного решения. Примерный образец чистового оформления в конце урока.

Как уже отмечалось, наиболее частный гость в данном типе заданий - это какие-нибудь корни. Но время от времени встречаются и другие функции. И заключительный простой пример для релаксации:

Пример 12

С помощью полного дифференциала функции двух переменных вычислить приближенно значение функции , если

Решение ближе к дну страницы. Еще раз обратите внимание на формулировки заданий урока, в различных примерах на практике формулировки могут быть разными, но это принципиально не меняет сути и алгоритма решения.

Если честно, немного утомился, поскольку материал был нудноватый. Непедагогично это было говорить в начале статьи, но сейчас-то уже можно =) Действительно, задачи вычислительной математики обычно не очень сложны, не очень интересны, самое важное, пожалуй, не допустить ошибку в обычных расчётах.

Да не сотрутся клавиши вашего калькулятора!

Решения и ответы:

Пример 2 :

Решение: Используем формулу:
В данном случае: , ,


Таким образом:

Ответ:

Пример 4:

Решение: Используем формулу:
В данном случае: , ,


Таким образом:

Вычислим более точное значение функции с помощью микрокалькулятора:

Абсолютная погрешность:

Относительная погрешность:


Ответ: , абсолютная погрешность вычислений , относительная погрешность вычислений

Пример 5:

Решение: Используем формулу:

В данном случае: , ,


Таким образом :

Ответ:

Пример 7:

Решение: Используем формулу:
В данном случае: , ,

Абсолютной погрешностью приближенного числа называется модуль разности между этим числом и его точным значением. . Отсюда следует, что заключено в пределах или .

Пример 1. На предприятии 1284 рабочих и служащих. При округлении этого числа до 1300 абсолютная погрешность составляет |1300 - 1284|=16. При округлении до 1280 абсолютная погрешность составляет |1280 - 1284| = 4.
Относительной погрешностью приближенного числа называется отношение абсолютной погрешности …
приближенного числа к модулю значения числа .
Пример 2 . В школе 197 учащихся. Округляем это число до 200. Абсолютная погрешность составляет |200 - 197| = 3. Относительная погрешность равна 3/|197| или 1,5 %.

В большинстве случаев невозможно узнать точное значение приближенного числа, а значит, и точную величину погрешности. Однако почти всегда можно установить, что погрешность (абсолютная или относительная) не превосходит некоторого числа.

Пример 3. Продавец взвешивает арбуз на чашечных весах. В наборе гирь наименьшая - 50 г. Взвешивание дало 3600 г. Это число – приближенное. Точный вес арбуза неизвестен. Но абсолютная погрешность не превышает 50 г. Относительная погрешность не превосходит 50/3600 ≈1,4%.

В примере 3 за предельную абсолютную погрешность можно взять 50 г, а за предельную относительную погрешность – 1,4 %.
Абсолютная погрешность обозначается греческой буквой Δ («дельта») или D a ; относительная погрешность - греческой буквой δ («дельта малая»). Если приближенное число обозначить буквой А, то δ = Δ/|А|.

Значащей цифрой приближенного числа А называется всякая цифра в его десятичном представлении, отличная от нуля, и нуль, если он содержится между значащими цифрами или является представителем сохраненного десятичного разряда

Пример. А= 0,002080. Здесь только первые три нуля не являются значащими.

n первых значащих цифр приближенного числа А являются верными , если абсолютная погрешность этого числа не превышает половины разряда, выражаемого n – й значащей цифрой, считая слева направо. Цифры, не являющиеся верными, называются сомнительными.

Пример. Если в числе a = 0,03450 все цифры верные, то .

Правила приближенных вычислений
понятие определение пример или примечание
Приближенные вычисления Вычисления, производимые над числами, которые известны нам с определённой точностью, например, полученными в эксперименте. Выполняя вычисления, всегда необходимо помнить о той точности, которую нужно или которую можно получить. Недопустимо вести вычисления с большой точностью, если данные задачи не допускают или не требуют этого. И наоборот.
Погрешности Разница между точным числом а и его приближенным значением А называется погрешностью данного приближенного числа. Если известно, что | а — А | < D, то величина D называется абсолютной погрешностью приближенной величины А. Отношение D /|А| = δ называется относительной погрешностью ; последнюю часто выражают в процентах. 3,14 является приближенным значением числа а , погрешность его равна 0,00159…, абсолютную погрешность можно считать равной 0,0016, а относительную погрешность δ равной 0.0016/3.14 = 0,00051 = 0,051%.
Значащие цифры все цифры числа, начиная с 1-й слева, отличной от нуля, до последней, за правильность которой можно ручаться. Приближенные числа следует записывать, сохраняя только верные знаки. Если, например, абсолютная погрешность числа 52438 равна 100, то это число должно быть записано, например, в виде 524 . 10 2 или 0,524 . 10 5 . Оценить погрешность приближенного числа можно, указав, сколько верных значащих цифр оно содержит. Если число А = 47,542 получено в результате действий над приближенными числами и известно, что δ = 0,1%, то a имеет 3 верных знака, т.е. А = 47,5
Округление Если приближенное число содержит лишние (или неверные) знаки, то его следует округлить. При округлении сохраняются только верные знаки; лишние знаки отбрасываются, причем если первая отбрасываемая цифра больше или равна 5 , то последняя сохраняемая цифра увеличивается на единицу.
Действия над приближенными числами Результат действий над приближёнными числами представляет собой также приближённое число. Число значащих цифр результата можно вычислить при помощи следующих правил: 1. При сложении и вычитании приближённых чисел в результате следует сохранять столько десятичных знаков, сколько их в приближённом данном с наименьшим числом десятичных знаков. 2. При умножении и делении в результате следует сохранять столько значащих цифр, сколько их имеет приближённое данное с наименьшим числом значащих цифр.

Результат действий с приближенными числами есть тоже приближенное число. При этом неточными могут оказаться и те цифры, которые получены действиями над точными цифрами данных чисел.

Пример 5. Перемножаются приближенные числа 60,2 и 80,1. Известно, что все выписанные цифры верны, так что истинные величины могут отличаться от приближенных лишь сотыми, тысячными и т. д. долями. В произведении получаем 4822,02. Здесь могут быть неверными не только цифры сотых и десятых, но и цифры единиц. Пусть, например, сомножители получены округлением точных чисел 60,25 и 80,14. Тогда точное произведение будет 4828,435, так что цифра единиц в приближенном произведении (2) отличается от точной цифры (8) на 6 единиц.

Теория приближенных вычислений позволяет:

1) зная степень точности данных, оценить степень точности результатов еще до выполнения действий;

2) брать данные с надлежащей степенью точности, достаточной, чтобы обеспечить требуемую точность результата, но не слишком большой, чтобы избавить вычислителя от бесполезных расчетов;

3) рационализировать сам процесс вычисления, освободив его от тех выкладок, которые не окажут влияния на точные цифры результата.

Реферат

Абсолютная и относительная погрешность


Введение


Абсолютная погрешность - является оценкой абсолютной ошибки измерения. Вычисляется разными способами. Способ вычисления определяется распределением случайной величины. Соответственно, величина абсолютной погрешности в зависимости от распределения случайной величины может быть различной. Если - измеренное значение, а - истинное значение, то неравенство должно выполняться с некоторой вероятностью, близкой к 1. Если случайная величина распределена по нормальному закону, то обычно за абсолютную погрешность принимают её среднеквадратичное отклонение. Абсолютная погрешность измеряется в тех же единицах измерения, что и сама величина.

Существует несколько способов записи величины вместе с её абсолютной погрешностью.

·Обычно используется запись со знаком ± . Например, рекорд в беге на 100 метров, установленный в 1983 году, равен 9,930±0,005 с .

·Для записи величин, измеренных с очень высокой точностью, используется другая запись: цифры, соответствующие погрешности последних цифр мантиссы, дописываются в скобках. Например, измеренное значение постоянной Больцмана равно 1,380 6488 (13)×10 ?23 Дж/К , что также можно записать значительно длиннее как 1,380 6488×10 ?23 ± 0,000 0013×10 ?23 Дж/К .

Относительная погрешность - погрешность измерения, выраженная отношением абсолютной погрешности измерения к действительному или среднему значению измеряемой величины (РМГ 29-99):.

Относительная погрешность является безразмерной величиной, либо измеряется в процентах.


1. Что называется приближённым значением?


С избыточным и недостаточным? В процессе вычислений весьма часто приходится иметь дело с приближенными числами. Пусть А - точное значение некоторой величины, называемое в дальнейшем точным числом А. Под приближенным значением величины А, или приближенным числам, называется число а , заменяющее точное значение величины А. Если а < А, то а называется приближенным значением числа А по недостатку. Если а > А, - то по избытку. Например, 3,14 является приближенным значением числа ? по недостатку, а 3,15 - по избытку. Для характеристики степени точности данного приближения пользуются понятием погрешности или ошибки.

Погрешностью ?а приближенного числа а называется разность вида


?а = А - а,


где А - соответствующее точное число.

Из рисунка видно, что длина отрезка АВ заключена между 6 см и 7 см.

Значит, 6 - приближенное значение длины отрезка АВ (в сантиметрах) > с недостатком, а 7 - с избытком.

Обозначив длину отрезка буквой у, получим: 6 < у < 1. Если a < х < b, то а называют приближенным значением числа х с недостатком, a b - приближенным значением х с избытком. Длина отрезка АВ (см. рис. 149) ближе к 6 см, чем к 7 см. Она приближенно равна 6 см. Говорят, что число 6 получилось при округлении длины отрезка до целых.

. Что называется погрешностью приближения?


А) Абсолютной?

Б) Относительной?

А) Абсолютной погрешностью приближения называется модуль разности между истинным значением величины и её приближённым значением. |x - x_n|, где x - истинное значение, x_n - приближённое. Например: Длина листа бумаги формата А4 равна (29.7 ± 0.1) см. А расстояние от Санкт-Петербурга до Москвы равно (650± 1) км. Абсолютная погрешность в первом случае не превосходит одного миллиметра, а во втором - одного километра. Вопрос, сравнить точность этих измерений.

Если вы думаете, что длина листа измерена точнее потому, что величина абсолютной погрешности не превышает 1 мм. То вы ошибаетесь. Напрямую сравнить эти величины нельзя. Проведем некоторые рассуждения.

При измерении длины листа абсолютная погрешность не превышает 0.1 см на 29.7 см, то есть в процентном соотношении это составляет 0.1/29.7 *100% = 0.33% измеряемой величины.

Когда мы измеряем расстояние от Санкт-Петербурга до Москвы абсолютная погрешность не превышает 1 км на 650 км, что в процентном соотношении составляет 1/650 *100% = 0.15% измеряемой величины. Видим, что расстояние между городами измерено точнее, чем длинна листа формата А4.

Б) Относительной погрешностью приближения называется отношение абсолютной погрешности к модулю приближённого значения величины.

математический погрешность дробь


где x - истинное значение, x_n - приближённое.

Относительную погрешность обычно вызывают в процентах.

Пример. При округлении числа 24,3 до единиц получается число 24.

Относительная погрешность равна. Говорят, что относительная погрешность в этом случае равна 12,5%.

) Какое округление, называется округлением?

А) С недостатком?

Б) С избытком?

А) Округление с недостатком

При округлении числа, выраженного десятичной дробью, с точностью до 10^{-n} с недостатком сохраняют n первых знаков после запятой, а последующие отбрасываются.

Например, округляя 12,4587 до тысячных с недостатком, получим 12,458.

Б) Округление с избытком

При округлении числа, выраженного десятичной дробью, с точностью до 10^{-n} с избытком сохраняют n первых знаков после запятой, а последующие отбрасываются.

Например, округляя 12,4587 до тысячных с недостатком, получим 12,459.

) Правило округления десятичных дробей.

Правило. Чтобы округлить десятичную дробь до определенного разряда целой или дробной части, все меньшие разряды заменяются нулями или отбрасываются, а предшествующий отбрасываемой при округлении цифре разряд не изменяет своей величины, если за ним идут цифры 0, 1, 2, 3, 4, и увеличивается на 1 (единицу), если идут цифры 5, 6, 7, 8, 9.

Пример. Округлить дробь 93,70584 до:

десятитысячных: 93,7058

тысячных: 93,706

сотых: 93,71

десятых: 93,7

целого числа: 94

десятков: 90

Несмотря на равенство абсолютных погрешностей, т.к. различны измеряемые величины. Чем больше измеряемый размер, тем меньше относительная погрешность при постоянстве абсолютной.


Репетиторство

Нужна помощь по изучению какой-либы темы?

Наши специалисты проконсультируют или окажут репетиторские услуги по интересующей вас тематике.
Отправь заявку с указанием темы прямо сейчас, чтобы узнать о возможности получения консультации.

В процессе измерения чего-либо нужно учитывать, что полученный результат еще неконечный. Чтобы более точно высчитать искомую величину, необходимо учитывать погрешность. Высчитать ее достаточно просто.

Как найти погрешность – вычисление

Разновидности погрешностей:

  • относительная;
  • абсолютная.

Что нужно для вычисления:

  • калькулятор;
  • результаты нескольких измерений одной величины.

Как найти погрешность – последовательность действий

  • Измерьте величину 3 – 5 раз.
  • Сложите все результаты и разделите полученное число на их количество. Данное число является действительным значением.
  • Вычислите абсолютную погрешность путем вычитания полученного в предыдущем действии значения из результатов измерений. Формула: ∆Х = Хисл – Хист. В ходе вычислений можно получить как положительные, так и отрицательные значения. В любом случае берется модуль результата. Если необходимо узнать абсолютную погрешность суммы двух величин, то вычисления проводятся согласно такой формуле: ∆(Х+Y) = ∆Х+∆Y. Она также работает при необходимости расчета погрешности разности двух величин: ∆(Х-Y) = ∆Х+∆Y.
  • Узнайте относительную погрешность для каждого из измерений. В таком случае нужно разделить полученную абсолютную погрешность на действительное значение. Затем умножьте частное на 100%. ε(x)=Δx/x0*100%. Значение можно и не переводить в проценты.
  • Чтобы получить более точное значение погрешности, необходимо найти среднее квадратическое отклонение. Ищется оно достаточно просто: вычислите квадраты всех значений абсолютной погрешности, а затем найдите их сумму. Полученный результат необходимо разделить на число (N-1), в котором N – это число всех измерений. Последним действием станет извлечение корня из полученного результата. После таких вычислений будет получено среднее квадратическое отклонение, которое обычно характеризует погрешность измерений.
  • Для нахождения предельной абсолютной погрешности необходимо найти самое маленькое число, которое по своему значению равно или превышает значение абсолютной погрешности.
  • Предельная относительная погрешность ищется таким же методом, только нужно находить число, которое больше или равно значения относительной погрешности.


Погрешности измерений возникают по различным причинам и влияют на точность полученного значения. Зная, чему равна погрешность, можно узнать более точное значение проведенного измерения.