Статистическое изучение вариационных рядов и расчет средних величин. Тест: Бесплатный тест по статистике

Понятие вариационного ряда. Первым шагом систематизации материалов статистического наблюдения является подсчет числа единиц, обладающих тем или иным признаком. Расположив единицы в порядке возрастания или убывания их количественного признака и подсчитав число единиц с конкретным значением признака, получаем вариационный ряд. Вариационный ряд характеризует распределение единиц определенной статистической совокупности по какому–либо количественному признаку.

Вариационный ряд представляет собой две колонки, в левой колонке приводятся значения варьирующего признака, именуемые вариантами и обозначаемые (x), а в правой – абсолютные числа, показывающие, сколько раз встречается каждый вариант. Показатели этой колонки называются частотами и обозначаются (f).

Схематично вариационный ряд можно представить в виде табл.5.1:

Таблица 5.1

Вид вариационного ряда

Варианты (x)

Частоты (f)

В правой колонке могут использоваться и относительные показатели, характеризующие долю частоты отдельных вариантов в общей сумме частот. Эти относительные показатели именуют частостями и условно обозначают через , т.е. . Сумма всех частостей равна единице. Частости могут быть выражены и в процентах, и тогда их сумма будет равна 100%.

Варьирующие признаки могут носить разный характер. Варианты одних признаков выражаются в целых числах, например, число комнат в квартире, число изданных книг и т.д. Эти признаки именуют прерывными, или дискретными. Варианты других признаков могут принимать любые значения в определенных пределах, как, например, выполнение плановых заданий, заработная плата и др. Эти признаки называют непрерывными.

Дискретный вариационный ряд. Если варианты вариационного ряда выражены в виде дискретных величин, то такой вариационный ряд называют дискретным, его внешний вид представлен в табл. 5.2:

Таблица 5.2

Распределение студентов по оценкам, полученным на экзамене

Оценки (х)

Количество студентов (f)

В % к итогу ()

Характер распределения в дискретных рядах изображается графически в виде полигона распределения, рис.5.1.

Рис. 5.1. Распределение студентов по оценкам, полученным на экзамене.

Интервальный вариационный ряд. Для непрерывных признаков вариационные ряды строятся интервальные, т.е. значения признака в них выражаются в виде интервалов «от и до». При этом минимальное значение признака в таком интервале именуют нижней границей интервала, а максимальное – верхней границей интервала.

Интервальные вариационные ряды строят как для прерывных признаков (дискретных), так и для варьирующих в большом диапазоне. Интервальные ряды могут быть с равными и неравными интервалами. В экономической практике в большинстве своем применяются неравные интервалы, прогрессивно возрастающие или убывающие. Такая необходимость возникает особенно в тех случаях, когда колеблемость признака осуществляется неравномерно и в больших пределах.

Рассмотрим вид интервального ряда с равными интервалами, табл. 5.3:

Таблица 5.3

Распределение рабочих по выработке

Выработка, т.р. (х)

Число рабочих (f)

Кумулятивная частота (f´)

Интервальный ряд распределения графически изображается в виде гистограммы, рис.5.2.

Рис.5.2. Распределение рабочих по выработке

Накопленная (кумулятивная) частота. В практике возникает потребность в преобразовании рядов распределения в кумулятивные ряды, строящиеся по накопленным частотам. С их помощью можно определить структурные средние, которые облегчают анализ данных ряда распределения.

Накопленные частоты определяются путем последовательного прибавления к частотам (или частостям) первой группы этих показателей последующих групп ряда распределения. Для иллюстрации рядов распределения используются кумуляты и огивы. Для их построения на оси абсцисс отмечаются значения дискретного признака (или концы интервалов), а на оси ординат – нарастающие итоги частот (кумулята), рис.5.3.

Рис. 5.3. Кумулята распределения рабочих по выработке

Если шкалы частот и вариантов поменять местами, т.е. на оси абсцисс отражать накопленные частоты, а на оси ординат – значения вариантов, то кривая, характеризующая изменение частот от группы к группе, будет носит название огивы распределения, рис.5.4.

Рис. 5.4. Огива распределения рабочих по выработке

Вариационные ряды с равными интервалами обеспечивают одно из важнейших требований, предъявляемых к статистическим рядам распределения, обеспечение сравнимости их во времени и пространстве.

Плотность распределения. Однако частоты отдельных неравных интервалов в названных рядах непосредственно не сопоставимы. В подобных случаях для обеспечения необходимой сравнимости исчисляют плотность распределения, т.е. определяют, сколько единиц в каждой группе приходится на единицу величины интервала.

При построении графика распределения вариационного ряда с неравными интервалами высоту прямоугольников определяют пропорционально не частотам, а показателям плотности распределения значений изучаемого признака в соответствующих интервалах.

Составление вариационного ряда и его графическое изображение является первым шагом обработки исходных данных и первой ступенью анализа изучаемой совокупности. Следующим шагом в анализе вариационных рядов является определение основных обобщающих показателей, именуемых характеристиками ряда. Эти характеристики должны дать представление о среднем значении признака у единиц совокупности.

Средняя величина . Средняя величина представляет собой обобщенную характеристику изучаемого признака в исследуемой совокупности, отражающая ее типический уровень в расчете на единицу совокупности в конкретных условиях места и времени.

Средняя величина всегда именованная, имеет ту же размерность, что и признак у отдельных единиц совокупности.

Перед вычислением средних величин необходимо произвести группировку единиц исследуемой совокупности, выделив качественно однородные группы.

Средняя, рассчитанная по совокупности в целом называется общей средней, а для каждой группы – групповыми средними.

Существуют две разновидности средних величин: степенные (средняя арифметическая, средняя гармоническая, средняя геометрическая, средняя квадратическая); структурные (мода, медиана, квартили, децили).

Выбор средней для расчета зависит от цели.

Виды степенных средних и методы их расчета. В практике статистической обработки собранного материала возникают различные задачи, для решения которых требуются различные средние.

Математическая статистика выводит различные средние из формул степенной средней:

где средняя величина; x – отдельные варианты (значения признаков); z – показатель степени (при z = 1 – средняя арифметическая, z = 0 средняя геометрическая, z = - 1 – средняя гармоническая, z = 2 – средняя квадратическая).

Однако вопрос о том, какой вид средней необходимо применить в каждом отдельном случае, разрешается путем конкретного анализа изучаемой совокупности.

Наиболее часто встречающимся в статистике видом средних величин является средняя арифметическая . Она исчисляется в тех случаях, когда объем осредняемого признака образуется как сумма его значений у отдельных единиц изучаемой статистической совокупности.

В зависимости от характера исходных данных средняя арифметическая определяется различными способами:

Если данные несгруппированные, то расчет ведется по формуле простой средней величины

Расчет средней арифметической в дискретном ряду происходит по формуле 3.4.

Расчет средней арифметической в интервальном ряду. В интервальном вариационном ряду, где за величину признака в каждой группе условно принимается середина интервала, средняя арифметическая может отличаться от средней, рассчитанной по несгруппированным данным. Причем, чем больше величина интервала в группах, тем больше возможные отклонения средней, вычисленной по сгруппированным данным, от средней, рассчитанной по несгруппированным данным.

При расчете средней по интервальному вариационному ряду для выполнения необходимых вычислений от интервалов переходят к их серединам. А затем рассчитывают среднюю величину по формуле средней арифметической взвешенной.

Свойства средней арифметической. Средняя арифметическая обладает некоторыми свойствами, которые позволяют упрощать вычисления, рассмотрим их.

1. Средняя арифметическая из постоянных чисел равна этому постоянному числу.

Если х = а. Тогда .

2. Если веса всех вариантов пропорционально изменить, т.е. увеличить или уменьшить в одно и то же число раз, то средняя арифметическая нового ряда от этого не изменится.

Если все веса f уменьшить в k раз, то .

3. Сумма положительных и отрицательных отклонений отдельных вариантов от средней, умноженных на веса, равна нулю, т.е.

Если , то . Отсюда .

Если все варианты уменьшить или увеличить на какое- либо число, то средняя арифметическая нового ряда уменьшится или увеличится на столько же.

Уменьшим все варианты x на a , т.е. x ´ = x a.

Тогда

Среднюю арифметическую первоначального ряда можно получить, прибавляя к уменьшенной средней ранее вычтенное из вариантов числа a , т.е. .

5. Если все варианты уменьшить или увеличить в k раз, то средняя арифметическая нового ряда уменьшится или увеличится во столько же, т.е. в k раз.

Пусть , тогда .

Отсюда , т.е. для получения средней первоначального ряда среднюю арифметическую нового ряда (с уменьшенными вариантами) надо увеличить в k раз.

Средняя гармоническая. Средняя гармоническая это величина обратная средней арифметической. Ее используют, когда статистическая информация не содержит частот по отдельным вариантам совокупности, а представлена как их произведение (М= xf). Средняя гармоническая будет рассчитываться по формуле 3.5

Практическое применение средней гармонической – для расчета некоторых индексов, в частности, индекса цен.

Средняя геометрическая. При применении средней геометрической индивидуальные значения признака представляют собой, как правило, относительные величины динамики, построенные в виде цепных величин, как отношение к предыдущему уровню каждого уровня в ряду динамики. Средняя характеризует, таким образом, средний коэффициент роста.

Средняя геометрическая величина используется также для определения равноудаленной величины от максимального и минимального значений признака. Например, страховая компания заключает договоры на оказание услуг автострахования. В зависимости конкретного страхового случая страховая выплата может колебаться от 10000 до 100000 долл. в год. Средняя сумма выплат по страховке составит долл.

Средняя геометрическая это величина, используемая как средняя из отношений или в рядах распределения, представленных в виде геометрической прогрессии, когда z = 0. Этой средней удобно пользоваться, когда уделяется внимание не абсолютным разностям, а отношениям двух чисел.

Формулы для расчета следующие

где – варианты осредняемого признака; – произведение вариантов; f – частота вариантов.

Средняя геометрическая используется в расчетах среднегодовых темпов роста.

Средняя квадратическая. Формула средней квадратической используется для измерения степени колеблемости индивидуальных значений признака вокруг средней арифметической в рядах распределения. Так, при расчете показателей вариации среднюю вычисляют из квадратов отклонений индивидуальных значений признака от средней арифметической величины.

Средняя квадратическая величина рассчитывается по формуле

В экономических исследованиях средняя квадратическая в измененном виде широко используется при расчете показателей вариации признака, таких как дисперсия, среднее квадратическое отклонение.

Правило мажорантности. Между степенными средними существует следующая зависимость – чем больше показатель степени, тем больше значение средней, табл.5.4:

Таблица 5.4

Соотношение между средними величинами

Значение z

Соотношение между средними

Это соотношение называется правилом мажорантности.

Структурные средние величины. Для характеристики структуры совокупности применяются особые показатели, которые можно назвать структурными средними. К таким показателям относятся мода, медиана, квартили и децили.

Мода. Модой (Мо) называется наиболее часто встречающееся значение признака у единиц совокупности. Модой называется то значение признака, которое соответствует максимальной точке теоретической кривой распределения.

Мода широко используется в коммерческой практике при изучении покупательского спроса (при определении размеров одежды и обуви, которые пользуются широким спросом), регистрации цен. Мод в совокупности может быть несколько.

Расчет моды в дискретном ряду. В дискретном ряду мода – это варианта с наибольшей частотой. Рассмотрим нахождение моды в дискретном ряду.

Расчет моды в интервальном ряду. В интервальном вариационном ряду модой приближенно считают центральный вариант модального интервала, т.е. того интервала, который имеет наибольшую частоту (частость). В пределах интервала надо найти то значение признака, которое является модой. Для интервального ряда мода будет определяться формулой

где – нижняя граница модального интервала; – величина модального интервала; – частота, соответствующая модальному интервалу; – частота, предшествующая модальному интервалу; – частота интервала, следующего за модальным.

Медиана. Медианой () называется значение признака у средней единицы ранжированного ряда. Ранжированный ряд – это ряд, у которого значения признака записаны в порядке возрастания или убывания. Или медиана это величина, которая делит численность упорядоченного вариационного ряда на две равные части: одна часть имеет значение варьирующего признака меньшие, чем средний вариант, а другая – большие.

Чтобы найти медиану, сначала определяется ее порядковый номер. Для этого при нечетном числе единиц к сумме всех частот прибавляется единица и все делится на два. При четном числе единиц медиана отыскивается как значение признака у единицы, порядковый номер который определяется по общей сумме частот, деленной на два. Зная порядковый номер медианы, легко по накопленным частотам найти ее значение.

Расчет медианы в дискретном ряду. По данным выборочного обследования получены данные о распределении семей по числу детей, табл. 5.5. Для определения медианы сначала определим ее порядковый номер

В этих семьях количество детей равно 2, следовательно, = 2. Таким образом, в 50% семей число детей не превышает 2.

–частота накопленная, предшествующая медианному интервалу;

С одной стороны, это весьма положительное свойство т.к. в этом случае учитывается действие всех причин, воздействующих на все единицы изучаемой совокупности. С другой стороны, даже одно наблюдение, попавшее в исходные данные случайно, может существенным образом исказить представление об уровне развития изучаемого признака в рассматриваемой совокупности (особенно в коротких рядах).

Квартили и децили. По аналогии с нахождением медианы в вариационных рядах можно отыскать значение признака у любой по порядку единицы ранжированного ряда. Так, в частности, можно найти значение признака у единиц, делящих ряд на 4 равные части, на 10 и т.п.

Квартили. Варианты, которые делят ранжированный ряд на четыре равные части, называют квартилями.

При этом различают: нижний (или первый) квартиль (Q1) – значение признака у единицы ранжированного ряда, делящей совокупность в соотношении ¼ к ¾ и верхний (или третий) квартиль(Q3) – значение признака у единицы ранжированного ряда, делящий совокупность в соотношении ¾ к ¼.

– частоты квартильных интервалов (нижнего и верхнего)

Интервалы, в которых содержатся Q1 и Q3 определяют по накопленным частотам (или частостям).

Децили. Кроме квартилей рассчитывают децили – варианты, делящие ранжированный ряд на 10 равных частей.

Обозначаются они через D, первый дециль D1 делит ряд в соотношении 1/10 и 9/10, второй D2 – 2/10 и 8/10 и т.д. Вычисляются они по той же схеме, что и медиана и квартили.

И медиана, и квартили, и децили принадлежат к так называемым порядковым статистикам, под которым понимают вариант, занимающий определенное порядковое место в ранжированном ряду.

Описательный характер медианы проявляется в том, что она характеризует количественную границу значений варьирующего признака, которыми обладает половина единиц совокупности.

При определении медианы в интервальных вариационных рядах сначала определяется интервал, в котором она находится (медианный интервал). Этот интервал характерен тем, что его накопленная сумма частот равна или превышает полусумму всех частот ряда. Расчет медианы интервального вариационного ряда производится по формуле:

где х 0 – нижняя граница интервала;

h – величина интервала;

fm – частота интервала;

f – число членов ряда;

?m- 1 – сумма накопленных членов ряда, предшествующих данному.

    Понятие вариации и её значение. Основные показатели вариации, их достоинства и значение.

Вариация - колеблемость, изменяемость величины признака у единиц совокупности. Отдельные числовые значения признака, встречающиеся в изу­чаемой совокупности, называют вариантами значений. Недостаточность средней величины для полной характеристики совокупности заставляет дополнять средние величины показателями, позволяющими оценить типичность этих средних путем измерения колеблемости (вариации) изучаемого признака. Наличие вариации обусловлено влиянием большого числа факторов на формирование уровня признака. Эти факторы действуют с неодинаковой силой и в разных направлениях. Для описания меры изменчивости признаков используют показатели вариации. Задачи статистического изучения вариации: 1) изучение характера и степени вариации признаков у отдельных единиц совокупности; 2) определение роли отдельных факторов или их групп в вариации тех или иных признаков совокупности. В статистике применяются специальные методы исследования вариации, основанные на использовании системы показателей, с помощью которых изме­ряется вариация. Исследование вариаций имеет важное значение. Измерение вариаций необходимо при проведении выборочного наблюдения, корреляционном и дисперсионном анализе и т. д. По степени вариации можно судить об однородности совокупности, об устойчивости отдельных значений признаков и типичности средней. На их основе разрабатываются показатели тесноты связи между признаками, показатели оценки точности выборочного наблюдения. Различают вариацию в пространстве и вариацию во времени . Под вариацией в пространстве понимают колеблемость значений признака у единиц совокупности, представляющих отдельные территории. Под вариацией во времени подразумевают изменение значений признака в различные периоды времени. Для изучения вариации в рядах распределения проводят расположение всех вариантов значений признака в возрастающем или убывающем порядке. Этот процесс называют ранжированием ряда. Самыми простыми признаками вариации являются минимум и максимум - самое наименьшее и наибольшее значение признака в совокупности. Число повторений отдельных вариантов значений признаков называют частотой повторения (fi). Частоты удобно заменять частостями – wi. Частость - относительный показатель частоты, который может быть выражен в долях единицы или процентах и позволяет сопоставлять вариационные ряды с различным числом наблюдений. Выражается формулой: Для измерения вариации признака применяются различные абсолютные и относительные показатели. К абсолютным показателям вариации относятся размах вариации, среднее линейное отклонение, дисперсия, среднее квадратическое отклонение. К относительным показателям колеблемости относят коэффициент осцилляции, относительное линейное отклонение, коэффициент вариации.

    Виды дисперсий и правило их сложения. Коэффициент детерминации и эмпирическое корреляционное отношение: экономическое значение и их расчёт.

Показатели вариации

Одних только средних недостаточно для оценки тех или иных явлений, так как средние уравнивают, сглаживают индивидуальные особенности отдельных единиц совокупности, показывают типичный для данных условий уровень варьирующих признаков, и тем самым могут затушевывать различные тенденции в развитии. В этом случае исчисляют показатели вариации ,характеризующие средние отклонения каждой единицы совокупности от среднего значения признака в целом .

Вариация имеет объективный характер и помогает познать сущность изучаемого явления.

Для измерения вариации в статистике применяют несколько способов, описательная характеристика которых представлена в табл. 5.6.

Дисперсия имеет ряд математических свойств, упрощающих технику ее расчета.

1. Если из всех вариант отнять какое-то постоянное число А , то дисперсия от этого не изменится.

2. Если все значения вариант разделить на какое-то постоянное число h , то дисперсия уменьшится от этого в h 2 раз, а среднее квадратическое отклонение – в h раз.

Таблица 5.6.

Показатели вариации

Название показателя

Обозначение и методика расчета

Сущностная храктеристика

по несгруппированным данным

по сгруппированным данным

Размах вариации

Улавливает только крайние отклонения значений признака, но не отражает отклонений от средней всех вариант в ряду. Чем больше размах вариации, тем менее однородна исследуемая совокупность

Среднее линейное отклонение

Представляет собой среднее арифметическое значение абсолютных отклонений признака от его среднего уровня. Чем меньше среднее линейное отклонение, тем более однородны значения признака изучаемого явления

Дисперсия

Представляет собой средний квадрат отклонений значений признака от его среднего уровня

Среднее квадратическое отклонение

Является абсолютной мерой вариации и зависит не только от степени вариации признака, но и от абсолютных уровней вариант и средней, что не позволяет непосредственно сравнивать средние квадратические отклонения вариационных рядов с разными уровнями. Оно выражается в тех именованных числах, в которых выражены варианта и средняя

Коэффициент вариации

Является относительной мерой вариации. Чем больше его величина, тем больше разброс значений признака вокруг средней, тем менее однородна совокупность по своему составу и тем менее представительна (типична) средняя

Методика расчета показателя дисперсии упрощенными способами показана на рис. 5.4. Отметим, что способ моментов применим в том случае, если задан интервальный ряд с равными интервалами , а способ разности применяется в любых рядах распределения : дискретных и интервальных с равными и неравными интервалами.

Вариация признака определяется различными факторами, в результате чего различают общую дисперсию, межгрупповую дисперсию и внутригрупповую дисперсию.

Общая дисперсия (σ 2 ) измеряет вариацию признака во всей совокупности под влиянием всех факторов, обусловивших эту вариацию. Вместе с тем, благодаря методу группировок можно выделить и измерить вариацию, обусловленную группировочным признаком, и вариацию, возникающую под влиянием неучтенных факторов.

Межгрупповая дисперсия (σ 2 м.гр ) характеризует систематическую вариацию, т. е. различия в величине изучаемого признака, возникающие под влиянием признака – фактора, положенного в основание группировки.

Рис.5.4. Упрощенные способы расчета дисперсии

,

где k – количество групп, на которые разбита вся совокупность;

m j – количество объектов, наблюдений, включенных в группу j ;

–среднее значение признака по группе j ;

–общее среднее значение признака.

Внутригрупповая дисперсия (σ 2 j,вн.гр ) отражает случайную вариацию, т.е. часть вариации, возникающую под влиянием неучтенных факторов и независящую от признака фактора, положенного в основание группировки.

, или, на основе метода разностей ,

где x ij – значение i -ой варианты в группе j .

Если в сформированных группах отдельные данные встречаются не один раз, то для расчета внутригрупповой дисперсии используется формула средней арифметической взвешенной.

Среднее значение внутригрупповых дисперсий рассчитывается по формуле:

.

Существует закон согласно которому, общая дисперсия, возникающая под воздействием всех факторов, равна сумме дисперсии, возникающей за счет группировочного признака и дисперсии, появляющейся под влиянием всех прочих факторов. Этот закон связывает три вида дисперсии.

Правило сложения дисперсий : .

Правило сложения дисперсии широко применяется при исчислении тесноты связей между признаками (факторным и результативным). Для этого определяют эмпирический коэффициент детерминации и эмпирическое корреляционное отношение.

Эмпирический коэффициент детерминации (η 2) показывает, какая доля всей вариации признака обусловлена признаком, положенным в основание группировки . (η – греческая буква «эта»).

Эмпирическое корреляционное отношение (η ) показывает тесноту связи между признаками - группировочным и результативным.

Оно изменяется в пределах от 0 до 1. Если η = 0, то группировочный признак не оказывает влияния на результативный, если η =1,то результативный признак изменяется только в зависимости от признака, положенного в основание группировки, а влияние прочих факторов равно нулю. Характеристика связи между признаками при соответствующих значениях эмпирического корреляционного отношения приведена в табл. 5.7.

Таблица 5.7

Качественная оценка связи между признаками

  1. Понятие и классификация рядов динамики. Сопоставимость уровней и смыкание рядов динамики.

Динамика – процесс развития движения соц.эк. явлений во времени. Для её отображения строят ряды динамики. Ряд динамики представл. Собой ряд расположенных в хронологической последовательности знач. Стат. показателей, характер. развитие явления Анализ рядов динамики позволяет выявить тенденции и закономерности соц.эк развития. Ряд динамики состоит из 2-ух элементов: 1)показатели времени (t) – либо определенные даты, либо отдельные периоды (годы, кварталы и тд.) 2)Уровни ряда (y) – они отображают количественную оценку развития во времени изучаемого явления. Виды рядов динамики : 1. По времени отражаемому в динамич. Рядах они делятся на: -моментальные отображают состояние изучаемых явлений на опр даты (моменты времени) С помощью моментных рядов изучают: численность населения, стоимость осн средств, товар запасы. Уровни мом. Рядов динамики суммировать не имеет смысла, т.к. мож. Возникнуть повторный счет – интервальные – отображают итоги развития изучаемого явления за отдельные периоды (интервалы времени) : ряды динамики произ-ва прод-ции, инвестиций, затраченных средств. Уровни интервального ряда динамики абсолют. Величин мож суммировать, т.к. их можно рассматривать как итог за более длительный период времени. 2. В зависимости от способа выражения уровней ряда динамики различают ряды: - абсолютных величин, - относительных, - средних величин. 3. В зависимости от расстояния м/у уровнями различ. ряды динамики с равностоящими и не равностоящими уровнями во времени. Основ условием для получения правильных выводов при анализе ряда динамики явл-ся сопоставимость его уровней. Условия сопоставимости уров. Ряда динамики. 1)Долж. Быть обеспечена одинаковая полнота охвата различных частей явления. Уровни динамического ряда за отдельные периоды времени долж харка-вать размер явления по одному и тому же кругу, входящий в его состав частей. 2)При определении сравниваемых уровней ряда динамики необх. Использовать единую методологию их расчета. 3)Равенство периодов, за к-рые приводятся данные. 4)Необходимо использовать одинаковые единицы измерения. При харак-ки стоимостных показателей во времени долж. б. устранено влияние изменение цен необх. оценка изучаемого показ-ля в ценах одного периода (в сопоставимых ценах) 5)Исходя из цели исследов-ия данные по тер-риям, границы которые изменились долж. б. пересчитаны в старых пределах. Для приведения уровней ряда дин-ки к сопоставимому виду использ. Прием, который наз-ся Смыкание рядов динамики. Смыкание- объединение в один ряд двух или нескольких рядов динам., уровни которых исчислены по разной методике или разными территориальными границами. Чтобы произвести смыкание рядов необх, чтобы для одного из периодов (переходного) имелись данные, рассчитанные по разной методике или в разных границах.

    Показатели интенсивности изменения уровня ряда динамики. Цепной и базисный способы расчёта.

Для качественной оценки динамики, изучаемых явлений применяется ряд стат. показателей получаемых в результате сравнения уровней м/у собой. При этом сравниваемый уров. Наз-ся отчетный, а уров., с которым происх. Сравнение базисным. К основ. показателям динамики относятся абсолют. Прирост, темп роста, темп прироста, абсолют. Значение одного % прироста. В зависимости от применяемого способа сопоставления показатели динамики мог. вычисляться с постоянной и переменной базой сравнения y 1← y 2← y 3← y 4← y 5 Абсолютный прирост характ. размер увеличения или уменьшения уровня ряда динамики за определенный период времени и определ-ся как разность м/у 2-мя уровнями ряда. ∆y ц = y i – y i - 1 ∆ y б = y i – y 0 м/у цепным и базисными абсолютными приростами сущ-ет взаимосвязь: сумма ценных абсол-ых приростов равна базисному абсол-му приросту последнего периода ряда динамики. ∑∆y ц = ∆ y бп Темп роста характеризует интенсивность изменения уравнения ряда и показывает во сколько раз уров. текущего периода больше или меньше уровня предыдущего (базисного) периода или сколько % он составляет по отношению к предыдущему периоду Трц = y i /y i-1 * 100% Трб = y i /y 0 * 100% м/у цепными и базис темпами роста имеется взаимосвязь: произведение последовательных цепных коэффициентов роста равно базисному коэффициенту роста последнего периода ряда динамики. П Крц = Крб Темп прироста показывает на сколько % - ов уров. данного периода больше или меньше уровня принятого за базу сравнения: Он мож б рассчитан 2 способами: а) как отношение абсол.-го прироста к уровню, принятому за базу сравнения Тпрц = ∆ y i / y i-1 * 100% Тпрб = ∆ y i / y 0 * 100% б) как разность м/у темпом роста и 100%-ми Тпр = Тр – 100% Абсолютное значение 1% присрота показывает какая абсло-ая величина содержится в относ-ном показателе – одном % прироста. Это отношение абсло-ого прироста к темпу прироста, выраженному в %-ах. Данный показатель рассчитывается по цепным данным А % =∆ y i / Тпр % = ∆ y i / (∆ y i / y i-1)*100 = y i-1 / 100 Для получения обобщающих показателей динамики соц.эк. явлений определяют средние величины: ср уровень ряда, сред абсол-ый прирост, след темп роста, сред темп прироста. Средний уровень ряда динамики дает общую характ-ку уровня явлен. За весь период. Методы его расчета зависят от вида ряда динамики. а) для моментных рядов для ровно стоящими расчит сред. уров. ряда осущ-ся по форм. средней хронологич-кой. y` = (½ y 1 + y 2 + y 3 + ….½y n)/n-1 n – число уровней ряда. б)для моментных рядов с не равностоящими уров-ми предварительно находятся значения уровней в серединах интервалов y` 1 = y 1 + y 2 /2 ; y 2 = y 2 + y 3 /2,……..,y` n = y n-1 + y n /2 Затем определяется общий сред уров. ряда по формуле средней арифм-ой взвешенной: y` = ∑y` i * t i / ∑t i y` I – сред уровни в интервалах м/у датами, ti – длительность интервала времени м/у уровнями. в) Для интервальных рядов с равностоящими уровн-ми во времени, сред уров расситыв-ся по формуле средней арифм-кой простой y` = ∑ y i /n Средний абсолютгый прирост показывает на сколько в среднем за единицу времени увеличивается (уменьшается) уровень ряда. ∆ y i = ∑ y iц / n-1 или ∆ y i = y n – y 1 /n-1

y1 – начальный уровень ряда динамики yn – конечный уровень ряда динамики. Средний темп роста показывает во сколько раз в среднем за единицу времени изменился уровень ряда динамик. Он опред-ся по форм. средней геометрической из цепных коэф-тов роста. Т`р = n – 1 √К ц р 1 * К ц р 2 *……*К ц р n – 1 = n – 1 √ ПКр ц = n -1 √Крб = n – 1 √ y n /y 1 * x 100%

Средний темп прироста показ-ет на сколько % в среднем за единицу времени увеличился (уменьшился) уровень ряда Т`пр = Т` - 100%.

    Средние показатели ряда динамики, их расчёт.

Каждый ряд динамики можно рассматривать как некую совокупность n меняющихся во времени показателей, которые можно обобщать в виде средних величин. Такие обобщенные (средние) показатели особенно необходимы при сравнении изменений того или иного показателя в разные периоды, в разных странах и т.д.

Обобщенной характеристикой ряда динамики может служить прежде всего средний уровень ряда . Способ расчета среднего уровня зависит от того, моментный ряд или интервальный (периодный).

В случае интервального ряда его средний уровень определяется по формуле простой средней арифметической величины из уровней ряда, т.е.

Если имеетсямоментный ряд, содержащий n уровней (y1, y2, …, yn ) с равными промежутками между датами (моментами времени), то такой ряд легко преобразовать в ряд средних величин. При этом показатель (уровень) на начало каждого периода одновременно является показателем на конец предыдущего периода. Тогда средняя величина показателя для каждого периода (промежутка между датами) может быть рассчитана как полусумма значений у на начало и конец периода, т.е. как . Количество таких средних будет. Как указывалось ранее, для рядов средних величин средний уровень рассчитывается по средней арифметической. Следовательно, можно записать. После преобразования числителя получаем,

где Y1 и Yn - первый и последний уровни ряда; Yi - промежуточные уровни.

Эта средняя известна в статистике каксредняя хронологическая для моментных рядов. Такое название она получила от слова «cronos» (время, лат.), так как рассчитывается из меняющихся во времени показателей.

В случае неравных промежутков между датами среднюю хронологическую для моментного ряда можно рассчитать как среднюю арифметическую из средних значений уровней на каждую пару моментов, взвешенных по величине расстояний (отрезков времени) между датами, т.е. . В данном случае предполагается, что в промежутках между датами уровни принмали разные значения, и мы из двух известных (yi и yi+1 ) определяем средние, из которых затем уже рассчитываем общую среднюю для всего анализируемого периода. Если же предполагается, что каждое значение yi остается неизменным до следующего (i+ 1)- го момента, т.е. известна точная дата изменения уровней, то расчет можно осуществлять по формуле средней арифметической взвешенной: ,

где – время, в течение которого уровеньоставался неизменным.

Кроме среднего уровня в рядах динамики рассчитываются и другие средние показатели – среднее изменение уровней ряда (базисным и цепным способами), средний темп изменения .

Базисное среднее абсолютное изменение представляет собой частное от деления последнего базисного абсолютного изменения на количество изменений. То есть

Цепное среднее абсолютное изменение уровней ряда представляет собой частное от деления суммы всех цепных абсолютных изменений на количество изменений, то есть

По знаку средних абсолютных изменений также судят о характере изменения явления в среднем: рост, спад или стабильность.

Из правила контроля базисных и цепных абсолютных изменений следует, что базисное и цепное среднее изменение должны быть равными.

Наряду со средними абсолютным изменением рассчитывается и среднее относительное тоже базисным и цепным способами.

Базисное среднее относительное изменение определяется по формуле

Цепное среднее относительное изменение определяется по формуле

Естественно, базисное и цепное среднее относительное изменения должны быть одинаковыми и сравнением их с критериальным значением 1 делается вывод о характере изменения явления в среднем: рост, спад или стабильность. Вычитанием 1 из базисного или цепного среднего относительного изменения образуется соответствующий среднийтемп изменения , по знаку которого также можно судить о характере изменения изучаемого явления, отраженного данным рядом динамики.

    Методы анализа основной тенденции в рядах динамики.

Измените уровней ряда динамики обуславливается на изучаемое явление определяющее влияние и формируют в рядах динамики основную тенденцию развития (тренд) Воздействие факторов действующих периодически вызывает повторяемые во времени колебания уровней ряда динамики. Действие разовых факторов отображается случайными (кратковременных) изменениями уровней ряда дин-ки. Т.т ряд дин-ки вкл след основ. компоненты: 1)основ тенденция (тренд) 2)циклические (периодические колебания) 3)Случайные колебания Основной тенденцией развития (трендом) наз-ся плавное и устойчивое изменения уровня явлений во времени свободное от случ. Колебний. Выявление основ тенденции изменения уровней ряда предполагает её количественное выражение в некоторой мере свободное от случайных воздействий. Для выявления тренда испо-ся различные способы сглаживания (выравнивания ряда) : 1)Метод укрепления интервалов – заключ-ся в том что первоначальный ряд динамики преобразуется в ряд более продолжительных периодов (Напр. ряд, содержащий данные в месячном выпуске продукции преобразуется в ряд квартальных данных) 2)Метод скользящей средней. Состоит в том сто исходные уровни ряда заменяются средними величинами, к-рые получают из данного уровня и нескольких симметрично его окружающих. Число уровней, поск-ым рассчитываются сред. значение наз-ся интервалом сглаживания, он мож. четным и нечетным. Расчет средних ведется способом скольжения, т.е. постепенным исключением их принятого периода скольжения. 1-ого уровня и включением следующего. Нахождение скользящей средней по четному числу уровней осложняется тем, что средняя мож быть отнесена толь. к середине укрупненного интер-ла. Поэт. для определения сглаженных уровней производится центрирование, т.е. нахождение средней из двух смежных скользящих средних для отнесения полученного уровня к определенной дате. 3)Аналитическое выравнивание. Суть метода заключается в подборе матем. Функции, к-рая наилучшим образом характеризует исходные уровни ряда динамики. Эмпирические (фактические) уровни ряда динамики заменяют на плавно изменяющиеся теоретические уровни, рассчитанные по какой-либо функц. Зависимости отклонение исходных уровней ряда от уровней, соответ-щих общей тенденции объясняется действием случайных или периодических факторов. Для выравнивания используют след. матем. Функции: а) линейная y t =a 0 +a 1 t

где – соответственно максимальное и минимальное значение признака в совокупности;

– число групп.

Наглядно ряды распределения можно представить при помощи их графического изображения. Для этой цели строят полигон, гистограмму, кумулятивную кривую, огиву.

ТЕМА 4. Абсолютные и относительные величины

Понятие статистического показателя и его виды

Статистический показатель – это количественно-качественная обобщающая характеристика, какого-то свойства группы единиц или совокупности в целом в конкретных условиях места и времени. В отличие от признака, статистический показатель получается расчетным путем. Это может быть простой подсчет единиц совокупности, суммирование значений признака, сравнение двух и нескольких величин, более сложные сравнения.

1. По охвату единиц совокупности статистические показатели подразделяются:


2. По способу расчета статистические показатели подразделяются:

3. По пространственной определенности статистические показатели подразделяются:


По форме выражения статистические показатели подразделяются:

Абсолютные величины

Абсолютная величина (показатель) – это число, которое выражает размер, объем явления в конкретных условиях места и времени. Абсолютные величины всегда являются именованными величинами, т. е. имеют какую-либо единицу измерения. В зависимости от выбранной единицы измерения различают следующие виды абсолютных величин:

1. Натуральные – характеризуют объем и размер явления в мерах длины, веса, объема, количеством единиц, числом событий. Натуральные показатели используются для характеристики объема, размера отдельных одноименных видов продукции, в связи, с чем их использование ограничено.

2. Условно-натуральные – используются в том случае, если необходимо перевести разные виды продукции, но одинакового значения в один условный показатель. Условно-натуральный показатель рассчитывают путем перемножения натурального показателя на коэффициент перевода (пересчета). Коэффициенты перевода пересчета берутся из справочников или рассчитываются самостоятельно. Условно-натуральные показатели используются для характеристики объема, размера однородной продукции, в связи, с чем их использование ограничено.

3. Трудовые – имеют такие единицы измерения, как чел.-час., чел.-день. Используются для определения затрат рабочего времени, для расчета заработной платы и производительности труда.

4. Стоимостные (универсальные) измеряются в денежных единицах соответствующей страны. Стоимостные показатели = количество продукции в натуральном выражении * цена единицы продукции. Стоимостные показатели являются универсальными, так как позволяют определить объем, размер разного вида продукции.

Недостатки абсолютных показателей: нельзя охарактеризовать качественные особенности и структуру изучаемого явления, для этого используются относительные показатели, которые рассчитываются на основе абсолютных показателей.

Относительные величины

Относительный показатель – это показатель, который представляет собой частное от деления одного абсолютного показателя на другой и дает числовую меру соотношения между ними.


Неименованные О. П.

1. Коэффициент получается в том случае, если база сравнения равна 1. Если коэффициент больше 1, то он показывает во сколько раз сравниваемая величина больше, базы сравнения . Если коэффициент меньше 1 , то он показывает какую часть базы сравнения составляет сравниваемая величина .

2. Процент, получатся в том случае, если база сравнения равна 100. Процент получают умножением коэффициента на 100.

3. Промилле (‰) – если база сравнения равна 1000. Получают умножением коэффициента на 1000. Промилле используются для того, чтобы избежать дробных значений показателей. Они широко используются в демографической статистике, где показатели смертности, рождаемости, браков определяются на 1000 человек.

4. Продецимилле (‰0)если база сравнения равна 10000. Получают умножением коэффициента на 10000. Например, сколько приходится врачей, больничных коек на 10000 человек.

Виды относительных величин (показателей):

1. Относительный показатель структуры:

Данный показатель рассчитывается по группированным данным и показывает долю отдельных частей в общем объеме совокупности. Может выражаться в форме коэффициента (доли) или процента (удельные веса). Пример, 0,4 – доля, 40% – удельный вес. Сумма всех долей равна 1, а удельных весов 100%.

2. Относительный показатель динамики:

.

Данный показатель показывает изменение явления во времени. Выражается в форме коэффициента – коэффициент роста, и форме процента – темп роста.

3. Относительный показатель выполнения плана:

Данный показатель показывает степень выполнения плана и выражается в форме %.

Относительный показатель планового задания:

Данный показатель показывает, какое планируется изменение показателя в будущем по сравнению с предшествующем периодом и выражается в форме процента.

Взаимосвязь между показателями: .

5. Относительный показатель координации:

Данный показатель может рассчитываться на 1, 10, 100 единиц и показывает, сколько единиц одной части приходится в среднем на 1, 10, 100 единиц другой части. Например, численность городского населения на 1, 10, 100 жителей села

6. Относительный показатель интенсивности:

Данный показатель рассчитывается путем сравнения разноименных показателей, находящихся в определенной взаимосвязи между собой. Данный показатель может рассчитываться на 1, 10, 100 единиц и является именованным показателем. Например, плотность населения – чел./1, 10, 100 км2.

7. Относительный показатель сравнения:

Данный показатель рассчитывается путем сравнения одноименных показателей относящихся к одному и тому же периоду времени, но к разным объектам или территориям. Выражается в форме коэффициента и процента.

ТЕМА 5. Средние величины и показатели вариации

1. Средняя величина: понятие и виды

Средняя величина – это обобщающий показатель, характеризующий типичный уровень варьирующего количественного признака на единицу совокупности в определенных условиях места и времени.

Условия расчета средней величины:

1. Совокупность, по которой рассчитывается средняя величина, должна быть достаточно большой, иначе случайные отклонения в величине признака не будут погашаться и средняя не проявит закономерности, свойственной данному процессу.

2. Совокупность, по которой рассчитывается средняя величина, должна быть качественно однородной, иначе они не только не будут иметь научной ценности, но и могут принести вред, искажая истинный характер изучаемого явления.

3. Общая средняя величина должна дополняться групповыми средними. Общая средняя показывает типический размер всей совокупности, а групповые средние − отдельных ее частей со специфическими свойствами.

4. Для всесторонней характеристики явления должна быть рассчитана система средних показателей, по наиболее существенным признакам.

Средняя величина всегда именованная, она имеет ту же размерность, что и усредняемый признак.

Виды средних величин:

1. Степенные средние (к ним относятся средняя арифметическая, средняя гармоническая, средняя квадратическая, средняя геометрическая);

2. Структурные средние (мода и медиана).

Степенные средние рассчитываются по формуле (корень в степени R из средних всех вариантов взятых в какой-то степени):

где − степенная средняя величина исследуемого признака;

− индивидуальное значение усредняемого признака;

− показатель степени средней;

− число признаков (единичной совокупности);

− сумма.

В зависимости от степени получают различные виды простых средних.

Значение

Наименование простой средней

простая гармоническая

где П – произведение

простая геометрическая

простая арифметическая

простая квадратическая

Чем выше показатель степени () в степенной средней, тем больше величина самой средней. Если рассчитать все эти средние по одним и тем же данным получим следующее соотношение:

Это свойство степенных средних возрастать с повышением показателя степени определяющей функции называется правилом мажорантности средних.

Из этих видов средних наиболее часто используется средняя арифметическая и средняя гармоническая. Выбор вида средней зависит от исходной информации.

Средняя арифметическая: способы расчета и ее свойства

Средняя арифметическая – это частное от деления суммы индивидуальных значений признака всех единиц совокупности на число единиц совокупности.

Средняя арифметическая применяется в форме простой средней и взвешенной средней. Средняя арифметическая простая рассчитывается по формуле:

где − среднее значение признака;

− индивидуальные значения признака (варианты);

− число единиц совокупности (вариант).

Средняя арифметическая простая применяется в двух случаях:

· когда каждая варианта встречается только один раз в ряду распределения;

· когда все частоты равны между собой.

Средняя арифметическая взвешенная используется, когда частоты не равны между собой:

где − частоты или веса (числа, показывающие, сколько

раз встречаются индивидуальные значения

признака).

Свойства средней арифметической (без доказательств):

1. Средняя величина от постоянной величины равна ей самой: .

2. Произведение средней величины на сумму частот равно сумме произведения вариантов на их частоты: .

3. Если каждую варианту увеличить или уменьшить на одну и ту же величину, то средняя величина увеличится или уменьшится на эту же величину: .

4. Если каждую варианту увеличить или уменьшить в одно и то же число раз, то средняя величина увеличится или уменьшится в то же число раз: .

5. Если все частоты увеличить или уменьшить в одинаковое число раз, средняя величина не изменится: .

6. Средняя величина суммы равна сумме средних величин: .

7. Сумма отклонений всех значений признака от средней величины рана нулю.

3. Способы расчета средней гармонической

В некоторых случаях характер исходных данных такой, что расчет средней арифметической теряет смысл и единственным обобщающим показателей может быть средняя гармоническая.

Виды средней гармонической:

1. Средняя гармоническая простая рассчитывается по формуле:

Средняя гармоническая простая используется очень редко, только для расчета средних затрат времени на изготовление единицы продукции при условии, если частоты всех вариант равны.

2. Средняя гармоническая взвешенная рассчитывается по формуле:

.

где – весь объем явления.

Средняя гармоническая взвешенная используется, если известен весь объем явления, но не известны частоты. Эта гармоническая используется для расчета средних качественных показателей: средней заработной платы, средней цены, средней себестоимости, средней урожайности, средней производительности труда.

4. Структурные средние: мода и медиана

Структурные средние (мода, медиана) применяются для изучения внутреннего строения и структуры рядов распределения значений признака.

Мода − наиболее часто встречающееся значение признака у единиц совокупности. В ряду распределения, где каждая варианта встречается один раз, мода не рассчитывается. В дискретном ряду модой является варианта с наибольшей частотой . Для интервального ряда с равными интервалами мода рассчитывается по формуле:

.

где − начальная (нижняя) граница модального интервала;

− величина соответственно модального, до – и послемодального интервалов

− частота модального, до – и послемодального интервалов соответственно.

Модальный интервал – это интервал, который имеет наибольшую частоту.

Медиана – это значение признака, которое лежит в середине ранжированного ряда и делит этот ряд на две равные части по числу единиц: одна часть имеет значения признака меньше медианы, а другая больше медианы.

Ранжированный ряд – это расположение значений признака в порядке возрастания или убывания.

В дискретном ранжированном ряду, где каждая варианта встречается один раз, а число вариант не четное номер медианы определяется по формуле:

где – число членов ряда.

В дискретном ранжированном ряду, где каждая варианта встречается один раз и число вариант четное медианой будет средняя арифметическая из двух вариант, расположенных в середине ранжированного ряда.

В дискретном ранжированном ряду, где каждая варианта встречается несколько раз, номер медианы определяется по формуле:

Затем, начиная с первой варианты, последовательно суммируются частоты, до тех пор пока не получите .

Для интервального ряда медиана рассчитывается по формуле:

,

где − нижняя граница медианного интервала;

− величина медианного интервала;

общее число единиц совокупности;

− накопленная частота до медианного интервала;

− частота медианного интервала.

Медианный интервал – это такой интервал, в котором его накопленная частота равна или превышает полусумму всех частот ряда.

5. Показатели вариации

Вариация признака – это различие индивидуальных значений признака внутри изучаемой совокупности. Вариация признака характеризуется показателями вариации. Показатели вариации дополняют средние величины, характеризуют степень однородности статистической совокупности по данному признаку, границы вариации признака. Соотношение показателей вариации определяет взаимосвязь между признаками.

Показатели вариации подразделяются на:

1) Абсолютные: размах вариации; среднее линейное отклонение; среднее квадратическое отклонение; дисперсия. Они имеют те же единицы измерения, что и значения признака

2) Относительные: коэффициент осцилляции, коэффициент вариации, относительное линейное отклонение.

Размах вариации показывает, на какую величину изменяется значение признака:

где – максимальное значение признака;

– минимальное значение признака.

Среднее линейное отклонение и среднее квадратическое отклонение показывают, на сколько в среднем отличаются индивидуальные значения признака от среднего его значения.

Среднее линейное отклонение определяется:

– простое; – взвешенное.

Дисперсия определяются:

– простая; – взвешенная;

– простое; – взвешенное.

Если средняя величина признака рассчитывалась по простой арифметической, тогда рассчитываются по простой формуле, если средняя рассчитывалась по взвешенной, тогда рассчитываются по взвешенной формуле.

Дисперсия и среднее квадратическое отклонение также могут рассчитываться по другой формуле:

– простая; – взвешенная.

Для сравнения вариации различных признаков в одной и той же совокупности или же одного и того же признака в разных совокупностях рассчитывается относительный показатель вариации, именуемый коэффициентом вариации :

Чем больше величина коэффициента вариации, тем больше разброс значений признака вокруг средней, тем менее однородна совокупность по своему составу и тем менее представительна средняя. Совокупность считается однородной, если коэффициент вариации не превышает 33%.

6. Виды дисперсий и закон (правило) сложения дисперсий

Если изучаемая совокупность состоит из нескольких групп, образованных на основе какого-либо признака, то помимо общей дисперсии определяют также межгрупповую дисперсию

Согласно правилу сложения дисперсий общая дисперсия равна сумме средней из внутригрупповых и межгрупповой дисперсий:

Пользуясь правилом сложения дисперсий, можно всегда по двум известным дисперсиям определить третью – неизвестную, а также судить о силе влияния группировочного признака.

Эмпирический коэффициент детерминации показывает долю, обусловленную вариацией группировочного признака, в общей вариации изучаемого признака:

Эмпирическое корреляционное отношение показывает влияние признака, положенного в основание группировки, на вариацию результативного признака:

Эмпирическое корреляционное отношение варьирует в пределах от 0 до 1. При связи нет, при – связь полная. Промежуточные значения оцениваются в зависимости от их близости к предельным значениям.

ТЕМА 6. Ряды динамики

1. Ряды динамики: понятие и виды

Ряд динамики (хронологический ряд, динамический ряд, временной ряд) – это ряд числовых значений статистического показателя расположенных в хронологической последовательности. Ряд динамики состоит из двух элементов (граф):

1. время (t) – это моменты (даты) или периоды (годы, кварталы, месяцы, сутки) времени, к которым относятся статистические показатели (уровни ряда).

2. уровень ряда (y) – значения статистического показателя, характеризующие состояние явления на указанный момент времени или за период времени.

Уровень ряда y

Виды рядов динамики:

1. По времени:

А) интервальные – ряды, уровни которых характеризуют размер явления за период времени (сутки, месяц, квартал, год). Примером такого ряда могут служить данные о динамике производства продукции, количества отработанных человеко-дней и т. д. Абсолютные уровни интервального ряда суммировать можно, сумма имеет смысла, что позволяет получать ряды динамики более укрупненных периодов.

Б) моментные – ряды, уровни которых характеризуют размер явления на дату (момент) времени. Примером такого ряда могут служить данные о динамике численности населения, численности скота, величины запаса, стоимости основных средств, оборотных активов и т. д. Уровни моментного ряда суммировать нельзя, сумма не имеет смысла, так как последующий уровень полностью или частично включает в себя предыдущий уровень.

2. По форме представления (способу выражения) уровней:

А) ряды абсолютных величин.

Б) ряды относительных величин. Относительными величинами характеризуются, например, динамика доли городского и сельского населения (%) и уровня безработицы.

Метод группировок позволяет изучить состояние и взаимосвязи экономических явлений, если группы будут охарактеризованы показателями, раскрывающими наиболее существенные стороны изучаемого явления.

При анализе и планировании необходимо опираться не на случайные факты, а на показатели, выражающие основное, типичное, коренное. Такую характеристику дают различные виды средних величин, а также мода и медиана.

Вопрос об однородности совокупности не должен решаться формально по форме ее распределения. Его, как и вопрос о типичной средней, нужно решать, исходя из причин и условий, формирующих совокупность. Однородной является такая совокупность, единицы которой формируются под воздействием общих главных причин и условий, определяющих общий уровень данного признака, характерный для всей совокупности.

Согласно теории типологических группировок, решающее значение в оценке однородности совокупности принадлежит не форме распределения, а размеру вариации и условиям ее формирования. Для качественно однородной совокупности характерна вариация в определенных пределах, после чего начинается новое качество. Вместе с тем к этим границам для оценки качественной однородности совокупности надо подходить с точки зрения существа дела, а не формально, так как одно и то же количество в разных условиях выражает новое качество. Например, при одной и той же численности рабочих предприятия одних отраслей промышленности являются крупными, а других – мелкими.

Для всестороннего и углубленного изучения явлений, для объективной характеристики типов явлений, их взаимоотношений и процессов, обусловленных развитием системы как целого, необходимо сочетать групповые средние с общими средними. Сочетание таких средних и является одним из основных элементов анализа сложных систем. Это сочетание связывает в одно целое два органически дополняющих друг друга статистических метода: метод средних величин и метод группировки. При расчете средней индивидуальные варьирующие по группе значения заменяются одним средним значением. При этом случайные отклонения значения признака по отдельным единицам в сторону увеличения или уменьшения взаимно уравновешиваются и погашают друг друга, а в величине средней проявляется типичный размер признака, свойственный данной группе. Средняя величина служит характеристикой совокупности и в то же время относится к отдельному ее элементу – носителю качественных особенностей явления. Значение средней вполне конкретно, но одновременно и абстрактно; оно получено путем абстрагирования от случайного индивидуального по каждой единице с целью выявления того общего, типичного, что свойственно всем единицам и что формирует данную совокупность. При расчете средней величины численность единиц совокупности должна быть достаточно большой. Величина средней определяется как отношение общего объема явлений к числу единиц совокупности в группе. Для несгруппированных данных это будет средняя арифметическая простая:

а для сгруппированных данных, где каждое значение признака имеет свою частоту, – средняя арифметическая взвешенная:

где X i – значение признака; f i – частота этих значений признака.

Поскольку средняя арифметическая рассчитывается как отношение суммы значений признака к общей численности, она никогда не выходит за пределы этих значений. Средняя арифметическая обладает рядом свойств, которые широко используются в целях упорядочения расчетов.

1. Сумма отклонений индивидуальных значений признака от средней величины всегда равна нулю:

Доказательство. n

Разделив левую и правую часть на

2. Если значения признака (X i) изменить в k раз, то средняя арифметическая также изменится в x раз.

Доказательство.

Среднюю арифметическую из новых значений признака обозначим X, тогда:

Постоянную величину 1/k можно вынести за знак суммы, и тогда получим:

3. Если из всех значений признака X i вычесть или прибавить одно и то же постоянное число, то средняя арифметическая уменьшится или увеличится на эту величину.

Доказательство.

Средняя из отклонений значений признака от постоянного числа будет равна:

Точно так же доказывается это и в случае прибавления постоянного числа.

4. Если частоты всех значений признака уменьшить или увеличить в n раз, то средняя не изменится:

При наличии данных об общем объеме и известных значениях признака, но неизвестных частотах для определения среднего показателя используют формулу среднеарифметической взвешенной.

Например, имеются данные о ценах реализации капусты и общей выручке за различные сроки реализации (табл. 1).

Таблица 1.

Цена реализации капусты и общая выручка за различные сроки реализации


Так как средняя цена представляет отношение общей выручки к общему объему реализованной капусты, то вначале следует определить количество реализованной капусты по разным срокам реализации как отношение выручки к цене, а затем уже определить среднюю цену реализованной капусты.

В нашем примере средняя цена будет:

Если рассчитать в данном случае среднюю цену реализации по средней арифметической простой, то получим иной результат, который исказит истинное положение и завысит среднюю цену реализации, так как не будет учтен тот факт, что большая доля в реализации приходится на позднюю капусту с более низкой ценой.

Иногда требуется определить среднюю величину, когда значения признака даются в виде дробных чисел, т. е. обратных целым числам (например, при изучении производительности труда через обратный его показатель, трудоемкость). В таких случаях целесообразно использовать формулу средней гармонической:

Так, среднее время, необходимое для изготовления единицы продукции, есть средняя гармоническая. Если Х 1 = 1/4 часа, Х 2 = 1/2 часа, Х 3 = 1/3 часа, то средняя гармоническая этих чисел есть:

Для расчета средней величины из отношений двух одноименных показателей, например темпов роста, применяется средняя геометрическая, рассчитанная по формуле:

где Х 1 x Х 2 … x … Х 4 – отношение двух одноименных величин, например цепных темпов роста; n – численность совокупности отношений темпов роста.

Рассмотренные средние величины обладают свойством маорантности:

Пусть, например, имеем следующие значения Х (20; 40), тогда рассмотренные ранее виды средних величин будут равны:

При изучении состава совокупности о типичном размере признака можно судить по так называемым структурным средним – моде и медиане.

Модой называется наиболее часто встречающееся значение признака в совокупности. В интервальных вариационных рядах сначала находят модальный интервал. В найденном модальном интервале мода рассчитывается по формуле:

где Х 0 – нижняя граница модального интервала; d – величина интервала; f 1 , f 2 , f 3 – частоты предмодального, модального и послемодаль-ного интервалов.

Значение моды в интервальном ряду довольно просто можно отыскать на основе графика. Для этого в самом высоком столбце гистограммы от границ двух смежных столбцов проводят две линии. Из точки пересечения этих линий опускают перпендикуляр на ось абсцисс. Значение признака на оси абсцисс и будет модой (рис. 2).


Рис. 2

Для решения практических задач наибольший интерес представляет обычно мода, выраженная в виде интервала, а не дискретным числом. Объясняется это назначением моды, которая должна выявить наиболее распространенные размеры явления.

Средняя – величина, типичная для всех единиц однородной совокупности. Мода – тоже типичная величина, но она определяет непосредственно размер признака, свойственный хотя и значительной части, но все же не всей совокупности. Она имеет большое значение для решения некоторых задач, например для прогнозирования того, какие размеры обуви, одежды должны быть предназначены для массового производства, и т. д.

Медиана – значение признака, находящееся посредине ранжированного ряда. Она указывает на центр распределения единиц совокупности и делит ее на две равные части.

Медиана является лучшей характеристикой центральной тенденции, когда границы крайних интервалов открыты. Медиана является более приемлемой характеристикой уровня распределения и в том случае, если в ряду распределения имеются чрезмерно большие или чрезмерно малые значения, которые оказывают сильное влияние на среднюю величину, а на медиану – нет. Медиана, кроме того, обладает свойством линейного минимума: сумма абсолютных значений отклонений величины признака у всех единиц совокупности от медианы минимальная, т. е.

Это свойство имеет большое значение для решения некоторых практических задач – например, для расчета самого короткого из всех возможных расстояний для разных видов транспорта, для размещения станций техобслуживания таким образом, чтобы расстояние до всех обслуживаемых данной станцией машин было минимальным, и т. п.

При отыскании медианы сначала определяется ее порядковый номер в ряду распределения:

Далее, соответственно порядковому номеру, по накопленным частотам ряда находят саму медиану. В дискретном ряду – без всякого расчета, а в интервальном ряду, зная порядковый номер медианы, по накопленным частотам отыскивается медианный интервал, в котором путем простейшего приема интерполяции определяется уже значение медианы. Расчет медианы осуществляется по формуле:

где Х 0 – нижняя граница медианного интервала; d – величина интервала; f _ 1 – частота, накопленная до медианного интервала; f – частота медианного интервала.

Рассчитаем среднюю величину, моду и медиану на примере интервального распределения. Данные приведены в табл. 2.


Таким образом, в качестве центра распределения могут быть использованы различные показатели: средняя величина, мода и медиана,


и каждая из этих характеристик имеет свои особенности. Так, для средней величины характерно то, что все отклонения от нее отдельных значений признака взаимно погашаются, т. е.

Для медианы характерно то, что сумма отклонений индивидуальных значений признака от нее (без учета знаков) является минимальной. Мода же характеризует наиболее часто встречающееся значение признака. Поэтому в зависимости от того, какая из особенностей интересует исследователя, и должна выбираться одна из рассмотренных характеристик. В отдельных случаях рассчитываются все характеристики.

Их сравнение и выявление соотношений между ними помогает выяснить особенности распределения того или иного вариационного ряда. Так, в симметричных рядах, как в нашем случае, все три характеристики (средняя, мода и медиана) примерно совпадают. Чем больше расхождение между модой и средней величиной, тем более асимметричен ряд. Установлено, что для умеренно асимметричных рядов разность между модой и средней арифметической примерно в три раза превышает разность между медианой и средней арифметической:

Это соотношение можно использовать для определения одного показателя по двум известным. Из этого следует, что сочетание моды, медианы и средней важно и для характеристики типа распределения.

Среднее есть абстрактная типическая характеристика всей совокупности. Оно уничтожает, погашает, сглаживает случайные и неслучайные колебания, влияние индиви­дуальных особенностей и позволяет представить в одной величине, некоторую общую характеристику реальной совокупности единиц. Основное условие научного использования средних заключается в том, чтобы каждое среднее характеризовало такую совокупность единиц, которая в существенном отношении, и в первую очередь в отношении осредняемых значений признака, была бы качественно однородной. Среди всего многообразия средних практически наибо­лее часто используемой считается среднее арифметическое.

Среднее арифметическое. Среднее арифметическое есть частное от деления суммы всех значений признака на их число. Обознача­ется оно х. Формула для вычисления имеет вид

По следующим данным вычислим среднее число газет, читаемых ежедневно индивидами в выборке, из 10 человек:

Формула (1) для сгруппированных данных преобразуется в следующую:

где n t - частота для i -го значения признака.

Если находят среднюю для интервального ряда.распределения, то в качестве значения признака для каждого интервала условно принимают его середину.

Процедуру вычисления среднего по сгруппированным данным удобно выполнять по следующей схеме (табл. 3).

Существует ряд упрощенных приемов вычисления средних. На с. 163 как промежуточный этап рассмотрено вычисление среднего методом отсчета от условного нуля.

Пример. Вышеприведенные данные о количестве прочитанных газет (см. с. 159) сгруппируем следующим образом:

Медиана. Медианой называется значение признака у той еди­ницы совокупности, которая расположена в середине ряда частот­ного распределения.

Если в ряду четное число членов (2k), то медиана равна средне­му арифметическому из двух серединных значений признака. При нечетном числе членов (2k+ 1) медианным будет значение призна­ка у (k + 1) объекта.

Предположим, что в выборке из 10 человек респонденты проранжированы по стажу работы на данном предприятии:

Серединные ранги 5 и 6, поэтому медиана равна

В интервальном ряду с различными значениями частот вычисление медианы распадается на два этапа: сначала находят медиан­ный интервал, которому соответствует первая из накопленных ча­стот, превышающая половину всего объема совокупности, а затем находят значение медианы по формуле

где Х0 - начало (нижняя граница) медианного интервала; d - ве­личина медианного интервала; n = Sn t - сумма частот (относитель­ных частот) интервалов; n н - частота (относительная), накоплен­ная до медианного интервала; n мe - частота (относительная) меди­анного интервала.


Проведем вычисление по данным табл. 2, где в нижней строке приведены накопленные относительные частоты. Первая из них, превышающая половину совокупности (100/2 = 50%), равна 57,9%. Следовательно, медиана принадлежит интервалу 3-4 года. По­этому

Таким образом, для данной выборки медиана, равная 3,7 года, показывает, что 50% семей имеют соотношение возрастов, меньшее этой величины, а другие 50%-большее. Медиана может быть легко определена графически по кумуляте распределения (см. рис. 3).

Медиана может быть применена для дискретных переменных, хотя дробные значения часто не имеют непосредственной содержа­тельной интерпретации.

По данным распределения рабочих по тарифным разрядам см. с. 156) вычислим медиану этого распределения, используя приведенную выше формулу 1 8 . Получим

Узнали, что 50% рабочих имеют разряд, меньший 3,1, и 50%-больший.

Медиана, как уже отмечалось, делит упорядоченный вариацион­ный ряд на две равные по численности группы.

Наряду с медианой можно рассматривать величины, называемые квантилями, которые делят ряд распределения на 4 равные части, на 10 и т. д.

Квантили, которые делят ряд на 4 равные по объему совокупно­сти, называются квартилями. Различают нижний Q1/4 и верхний квартили (рис. 6). Величина Q 1/2 является медианой. Вычисле­ние квартилей совершенно аналогично вычислению медианы:

где х 0 - минимальная граница интервала, содержащего нижний (верхний) квартиль; n н - частота (относительная частота), накоп­ленная до квартального интервала; n Q - частота (относительная частота) квартального интервала; d - величина квартального ин­тервала.

Процентили делят множество наблюдений на 100 частей с рав­ным числом наблюдений в каждой. Децили делят множество наблю­дений на десять равных частей. Квантили легко вычисляются по распределению накопленных частот (по кумуляте).

Мода. Модой в статистике называется наиболее часто встречаю­щееся значение признака, т. е. значение, с которым наиболее веро­ятно можно встретиться в серии зарегистрированных наблюдений. В дискретном ряду мода (Мо) - это значение с наибольшей частотой.

В интервальном ряду (с равными интервалами) модальным яв­ляется класс с наибольшим числом наблюдений. Значение моды находится в его пределах и вычисляется по формуле

где х 0 - нижняя граница модального интервала; d - величина ин­тервала; n- - частота интервала, предшествующего модальному; n Мо - частота модального класса; n + - частота интервала, следую­щего за модальным.

В совокупностях, в которых может быть произведена лишь опе­рация классификации объектов по какому-нибудь качественному признаку, вычисление моды является единственный способом ука­зать некий центр тяжести совокупности.

К недостаткам моды следует отнести следующие: невозможность совершать над ней алгебраические действия; зависимость ее величи­ны от интервала группировки; возможность существования в ряду распределения нескольких модальных значений признака (см., например, рис. 4, в).

Сравнение средних . Целесообразность использования того или иного типа средней величины зависит по крайней мере от следующих условий: цели усреднения, вида распределения, уровня измерения признака, вычислительных соображений. Цель усреднения свя­зана с содержательной трактовкой рассматриваемой задачи. Однако форма распределения может существенно усложнить исследование средних. Если для симметричного распределения (см. рис. 4, а) мода, медиана и среднее арифметическое тождественны, то для асимметричного распределения это не так. На выбор средней мо­жет повлиять и вид распределения. Например, для ряда с откры­тыми конечными интервалами нельзя вычислять среднее арифмети­ческое, но если распределение близко к симметричному, можно под­считать тождественную ему в этом случае медиану.