Как изменяется температура с высотой? Как изменяется температура воздуха с высотой? Что такое вертикальный градиент температуры.

Изменение температуры воздуха с высотой

Задание 1. Определите, какую температуру будет иметь воздушная масса, не насыщенная водяным паром и поднимающаяся адиабатически на высоте 500, 1000, 1500 м, если у поверхности земли её температура была 15є.

Температура изменяется на 1° при подъеме массы воздуха на каждые 100 м. Эта величина называется сухоадиабатическим градиентом температуры. При подъеме насыщенного водяным паром воздуха скорость его охлаждения несколько уменьшается, так как при этом происходит конденсация водяного пара, при которой выделяется скрытая теплота парообразования (600 кал на 1 г сконденсированной воды), идущая на нагревание этого поднимающегося воздуха. Адиабатический процесс, происходящий внутри поднимающегося насыщенного воздуха, называется влажноадиабатическим. Величина понижения (повышения) температуры на каждые 100 м в поднимающейся влажной насыщенной массе воздуха называется влажноадиабатическим градиентом температуры г в , а график изменения температуры с высотой в подобном процессе носит название влажной адиабаты. В отличие от сухоадиабатического градиента г а влажноадиабатический градиент г в - величина переменная, зависящая от температуры и давления, и лежит в пределах от 0,3° до 0,9° на 100 м высоты (в среднем 0,6° на 100 м.). Чем больше конденсируется влаги при подъеме воздуха, тем меньше величина влажноадиабатического градиента; с уменьшением количества влаги его величина приближается к сухоадиабатическому градиенту.

Вертикальный градиент температуры на высоте 500 метров должен быть = 12 є. Вертикальный градиент температуры на высоте 1000 метров должен быть = 9 є. Вертикальный градиент температуры на высоте 1500 метров должен быть = 6 є. Но, как только воздух начнет подниматься, он будет становиться холоднее окружающего, причем с высотой разница температур увеличивается.

Но холодный воздух, как более тяжелый, стремится опуститься, т.е. занять первоначальное положение. Поскольку воздух ненасыщенный, то при его подъеме температура должна понижаться на 1°С на 100 м.

Поэтому, температура воздушной массы на высоте 500 метров будет = 10°С. Поэтому, температура воздушной массы на высоте 1000 метров будет = 5°С. Поэтому, температура воздушной массы на высоте 1500 метров будет = 0°С.

Определение высоты уровней конденсации и сублимации

Задание 1. Определите высоту уровня конденсации и сублимации поднимающегося адиабатически воздуха, не насыщенного водяным паром, если известны его температура (Т) и упругость водяного пара (е); Т = 18є, е = 13,6 гПа.

Температура поднимающегося воздуха, не насыщенного водяным паром, изменяется каждые 100 метров на 1є. Вначале - по кривой зависимости максимальной упругости паров от температуры воздуха необходимо найти точку росы (ф). Затем определить разницу между температурой воздуха и точкой росы (Т - ф). Умножив эту величину на 100 м, найдите величину уровня конденсации. Для определения уровня сублимации надо найти разницу температур от точки росы до температуры сублимации и помножить эту разницу на 200 м.

Уровень конденсации - уровень, до которого нужно подняться, чтобы содержащийся в воздухе водяной пар при адиабатическом подъёме достиг состояния насыщения (или 100 % относительной влажности). Высота, на которой водяной пар в поднимающемся воздухе становится насыщенным можно найти по формуле: , где T - температура воздуха; ф - точка росы.

ф = 2,064 (по таблице)

18 є - 2,064 = 15,936 є х 122 = 1994м высота насыщения водяного пара.

Сублимация наступает при температуре - 10є.

2,064 - (-10) = 12,064 х 200 = 2413м уровень сублимации.

Задание 2 (Б). Воздух, имеющий температуру 12єС и относительную влажность 80%, переваливает через горы высотой 1500 м. На какой высоте начнется образование облаков? Каковы температура и относительная влажность воздуха на вершине хребта и за хребтом?

Если известна относительная влажность воздуха r, то высоту уровня конденсации можно определить по формуле Ипполитова: h=22 (100-r) h = 22 (100-80) = 440м начало образования слоистых облаков.

Процесс образования облака начинается с того, что некоторая масса достаточно влажного воздуха поднимается вверх. По мере подъема будет происходить расширение воздуха. Это расширение можно считать адиабатным, так как воздух поднимается быстро, и при достаточно большом его объеме теплообмен между рассматриваемым воздухом и окружающей средой за время подъема попросту не успевает произойти.

При адиабатном расширении газа его температура понижается. Значит, поднимающийся вверх влажный воздух будет охлаждаться. Когда температура охлаждающегося воздуха понизится до точки росы, станет возможным процесс конденсации пара, содержащегося в воздухе. При наличии в атмосфере достаточного количества ядер конденсации этот процесс начинается. Если ядер конденсации в атмосфере мало, конденсация начинается не при температуре, равной точке росы, а при более низких температурах.

Достигнув высоты 440м, поднимающийся влажный воздух охладится, начнется конденсация водяных паров. Высота 440м нижняя граница формирующегося облака. Продолжающий поступать снизу воздух проходит сквозь эту границу, и процесс конденсации паров будет происходить выше указанной границы - облако начнет развиваться в высоту. Вертикальное развитие облака прекратится тогда, когда воздух перестанет подниматься; при этом сформируется верхняя граница облака.

Температура на вершине хребта +3 єС и относительная влажность воздуха 100%.

местное время сухоадиабатический градиент

  • 9. Поглощение и рассеивание солнечной радиации в атмосфере
  • 10. Суммарная радиация. Распределение суммарной солнечной радиации на земной поверхности. Отраженная и поглощенная радиации. Альбедо.
  • 11. Радиационный баланс земной поверхности. Тепловое излучение земной поверхности.
  • 12. Тепловой баланс атмосферы.
  • 13. Изменение температуры воздуха с высотой.
  • 17. Характеристики влажности воздуха. Суточный и годовой ход парциального давления водяного пара и относительной влажности.
  • 21. …Мгла. Условия образования туманов. Туманы охлаждения и испарения.
  • 22. Образование осадков: конденсация, сублимация и коагуляция. Классификация осадков по агрегатному состоянию и характеру выпадения (ливневые, обложные, моросящие).
  • 23. Типы годового хода осадков.
  • 24. Географическое распределение осадков. Коэффициент увлажнения.
  • 23. Вертикальный барический градиенты. Годовой ход атмосферного давления.
  • 27. Ветер, его скорость и направление. Роза ветров.
  • 28. Силы, действующие на ветер: барический градиент, Кориолиса, трения, центробежная. Геострофический и градиентный ветер.
  • 29. Воздушные массы. Классификация воздушных масс. Фронты в атмосфере. Климатологические фронты.
  • 30. Типы фронтов: теплый, холодный, фронты окклюзии
  • 31. Модель оца: полярное, умеренное, тропическое звено.
  • 32. Географическое распределение атмосферного давления. Центры действия атмосферы: постоянные, сезонные.
  • 33. Циркуляция в тропиках. Пассаты. Внутритропическая зона конвергенции. Тропические циклоны, их возникновение и распространение.
  • 34. Циркуляция внетропических широт. Циклоны и антициклоны, их возникновение, эволюция, перемещение. Погода в циклонах и антициклонах.
  • 35. Муссоны. Тропические и внетропические муссоны.
  • 36. Местные ветра: бризы, горно-долинные, фен, бора, ледниковые, стоковые.
  • 37. Прогноз погоды: кратко-, средне- и долгосрочный.
  • 38. Понятие о климате. Макро-, мезо- и микроклимат. Климатообразующие процессы (теплооборот, влагооборот, атмосферная циркуляция) и географические факторы климата.
  • 39. Влияние географической широты, распределения суши и моря, океанических течений на климат. Феномен Эль-Ниньо.
  • 40. Влияние рельефа, растительного и снежного покрова на климат.(в 39 вопросе) Воздействие человека на климат: климат города.
  • 41. Классификации климатов Земли. Классификация климата согласно Кеппена-Треверта.
  • 42. Характеристика типов климата экваториального и субэкваториального поясов (согласно классификации б.П.Алисова).
  • 43. Характеристика типов климата тропического и субтропического поясов (согласно классификации б.П.Алисова).
  • 44. Характеристика типов климата экваториального и субэкваториального поясов (согласно классификации б.П.Алисова).
  • 45. Характеристика типов климата умеренного, субполярных и полярных поясов (согласно классификации б.П.Алисова).
  • 46. Климат Беларуси: солнечная радиация, циркуляция атмосферы, распределение температуры и осадков. Времена года.
  • 47. Климатические области Беларуси. Агроклиматическое районирование (по а.Х. Шкляру).
  • 48. Причины изменения климата. Методы исследований климата прошлого. Палеоклиматология.
  • 49. Изменение климата в геологической истории Земли: докембрии, фанерозое, плейстоцене и голоцене.
  • 50. Антропогенные изменения климата. Социально-экономические последствия потепления климата.
  • 13. Изменение температуры воздуха с высотой.

    Распределение температуры в атмосфере по вертикали положено в основу разделения атмосферы на пять основных слоев. Для сельскохозяйственной метеорологии наибольший интерес представляют закономерности изменения температуры в тропосфере, особенно в ее приземном слое.

    Вертикальный градиент температуры

    Изменение температуры воздуха на 100 м высоты называется вертикальным градиентом температуры (ВГТ зависит от ряда факторов: времени года (зимой он меньше, летом больше), времени суток (ночью меньше, днем больше), расположения воздушных масс (если на каких-либо высотах над холодным слоем воздуха располагается слой более теплого воздуха, то ВГТ меняет знак на обратный). Среднее значение ВГТ в тропосфере составляет около 0,б°С/100 м.

    В приземном слое атмосферы ВГТ зависит от времени суток, погоды и от характера подстилающей поверхности. Днем ВГТ почти всегда положителен, особенно летом над сушей, но при ясной погоде он в десятки раз больше, чем при пасмурной. В ясный полдень летом температура воздуха у поверхности почвы может на 10 °С и более превышать температуру на высоте 2 м. Вследствие этого ВГТ в данном двухметровом слое в пересчете на 100 м составляет более 500°С/100 м. Ветер уменьшает ВГТ, поскольку при перемешивании воздуха его температура на разных высотах выравнивается. Уменьшают ВГТ облачность и осадки. При влажной почве резко снижается ВГТ в приземном слое атмосферы. Над оголенной почвой (паровое поле) ВГТ больше, чем над развитым посевом или лугом. Зимой над снежным покровом ВГТ в приземном слое атмосферы невелик и нередко отрицателен.

    С высотой влияние подстилающей поверхности и погоды на ВГТ ослабевает и ВГТ уменьшается по сравнению с его значениями в приземном слое воздуха. Выше 500 м затухает влияние суточного хода температуры воздуха. На высотах от 1,5 до 5-6км ВГТ находится в пределах 0,5-0,6° С/100 м. На высоте 6-9км ВГТ возрастает и составляет 0,65-0,75° С/100 м. В верхнем слое тропосферы ВГТ снова уменьшается до 0,5-0,2° С/100 м.

    Данные о ВГТ в различных слоях атмосферы используют при составлении прогнозов погоды, при метеорологическом обслуживании реактивных самолетов и при выводе спутников на орбиту, а также при определении условий выброса и распространения промышленных отходов в атмосфере. Отрицательный ВГТ в приземном слое воздуха ночью весной и осенью указывает на возможность заморозка.

    17. Характеристики влажности воздуха. Суточный и годовой ход парциального давления водяного пара и относительной влажности.

    Упругость водяного пара в атмосфере - парциальное давление водяного пара, находящегося в воздухе

    В атмосфере Земли содержится около 14 тыс. км 3 водяного пара. Вода попадает в атмосферу в результате испарения с подстилающей поверхности. В атмосфере влага конденсируется, перемещается воздушными течениями и вновь выпадает в виде разнообразных осадков на поверхность Земли, совершая, таким образом, постоянный круговорот воды. Круговорот воды возможен, благодаря, способности воды находится в трёх состояниях (жидком, твердом, газообразном (парообразном)) и легко переходить из одного состояния в другое. Влагооборот является одним из важнейших циклов климатообразования.

    Для количественного выражения содержания водяного пара в атмосфере употребляют различные характеристики влажности воздуха. Основные характеристики влажности воздуха – упругость водяного пара и относительная влажность.

    Упругость (фактическая) водяного пара (е) – давление водяного пара находящегося в атмосфере выражается в мм.рт.ст. или в миллибарах (мб). Численно почти совпадает с абсолютной влажностью (содержанием водяного пара в воздухе в г/м 3), поэтому упругость часто называют абсолютной влажностью. Упругость насыщения (максимальная упругость) (Е) – предел содержания водяного пара в воздухе при данной температуре. Значение упругости насыщения зависит от температуры воздуха, чем выше температура, тем больше он может содержать водяного пара.

    Суточный ход влажности (абсолютной) может быть простым и двойным. Первый совпадает с суточным ходом температуры, имеет один максимум и один минимум и характерен для мест с достаточным количеством влаги. Он наблюдается над океанами, а зимой и осенью – над сушей.

    Двойной ход имеет два максимума и два минимума и характерен для летнего сезона на суше: максимумы в 9 и 20-21 часа, а минимумы в 6 и в 16 часов.

    Утренний минимум перед восходом Солнца объясняется слабым испарением в ночные часы. С увеличением лучистой энергии испарение растет, упругость водяного пара достигает максимума около 9 часов.

    В результате разогрева поверхности развивается конвекция воздуха, перенос влаги происходит быстрее, чем поступление ее с испаряющейся поверхности, поэтому около 16 часов возникает второй минимум. К вечеру конвекция прекращается, а испарение с нагретой поверхности еще достаточно интенсивно и в нижних слоях накапливается влага, обеспечивая второй максимум около 20-21 часа.

    Годовой ход упругости водяного пара соответствует годовому ходу температуры. Летом упругость водяного пара больше, зимой – меньше.

    Суточный и годовой ход относительной влажности почти всюду противоположен ходу температуры, т. к. максимальное влагосодержание с повышением температуры растет быстрее упругости водяного пара. Суточный максимум относительной влажности наступает перед восходом Солнца, минимум – в 15-16 часов.

    В течение года максимум относительной влажности, как правило, приходится на самый холодный месяц, минимум – на самый теплый месяц. Исключение составляют регионы, в которых летом дуют влажные ветры с моря, а зимой – сухие с материка.

    Абсолютная влажность = количество воды в данном объеме воздуха, измеряется в (г/м³)

    Относительная влажность = процент фактического количества воды (давления водяного пара) к давлению паров воды при этой температуре в условиях насыщения. Выражается в процентах. Т.е. 40% влажность означает, что при этой температуре всего воды может испариться еще 60 %.

    Ежеминутно Солнце обрушивает на нашу планету гигантское количество света и тепла. Почему же температура воздуха не всегда и не везде одинакова?

    Как нагревается воздух?

    Солнечные лучи проходят через воздух атмосферы, почти не нагревая его. Основное тепло воздух получает от нагретой солнечными лучами земной поверхности. Поэтому температура воздуха в тропосфере понижается на 0,6 °С при подъёме на каждые 100 метров высоты.

    Земная поверхность и воздух над ней нагреваются солнцем неравномерно. Это зависит от угла падения солнечных лучей. Чем больше угол падения солнечных лучей, тем выше температура воздуха. Поэтому над полюсами воздух холоднее, чем . Перепады температур на Земле очень велики: от +58,1 °С в до -89,2 °С в .

    Нагрев поверхности, а значит, и температура воздуха над ней зависят также от способности поверхности поглощать тепло и отражать солнечные лучи.

    Изменение температуры воздуха

    Температура воздуха на одной и той же широте не постоянна. Она изменяется в течение суток и по сезонам года вслед за изменением угла падения солнечных лучей. Суточные изменения наиболее отчётливы при ясной, безоблачной . Сезонные различия наиболее значительны в освещённости.

    Годовой ход температуры воздуха характеризуется средними месячными температурами. В странах Северного полушария самая высокая среднемесячная температура обычно бывает в июле, самая низкая - в январе.

    В горах температура воздуха падает с высотой. Поэтому, чем выше горы, тем температура на вершинах ниже.

    Температура изменяется также и в течение суток. На любой широте при ясной погоде летом самая высокая температура бывает в 14 часов, а самая низкая - перед восходом солнца. Разница между самыми высокими (максимальными) и самыми низкими (минимальными) температурами за какой-либо отрезок времени называется амплитудой температур. Обычно определяют суточную и годовую амплитуду.

    На картах точки с равными температурами соединяют линиями - изотермами. Как правило, показывают изотермы средних температур января и июля.

    Парниковый эффект

    Наблюдения показали, что начиная с 1860 года средняя температура у поверхности Земли поднялась на 0,6 °С и продолжает повышаться. Потепление связывают с явлением под названием парниковый эффект. Его главный виновник - углекислый газ, который накапливается в атмосфере в результате сжигания топлива. Он плохо пропускает тепло от нагретой земной поверхности в атмосферу, поэтому в приземных слоях тропосферы повышается температура. Если содержание углекислого газа в атмосфере будет расти и дальше, Землю ожидает очень сильное потепление.

    В августе месяце мы отдыхали на Кавказе у моей однокурсницы Нателлы. Нас угощали вкуснейшим шашлыком и домашним вином. Но больше всего мне запомнилась экскурсия в горы. Внизу было очень тепло, но вверху - просто холодно. Я задумалась о том, почему с высотой температура воздуха понижается. При подъеме на Эльбрус это было очень заметно.

    Изменение температуры воздуха с высотой

    Пока мы поднимались по горному маршруту, проводник Зураб объяснял нам причины понижения температуры воздуха с высотой.

    Воздух в атмосфере нашей планеты находится в поле тяготения. Поэтому его молекулы постоянно перемешиваются. При движении вверх молекулы расширяются, и температура падает, при движении вниз, наоборот, повышается.

    Это видно, когда самолет поднимается на высоту, и в салоне сразу становится холодно. Я до сих пор помню свой первый перелет в Крым. Запомнила я его именно благодаря этой разнице температуры внизу и на высоте. Мне казалось, что мы просто висим в холодном воздухе, а внизу карта местности.


    Температура воздуха зависит от температуры земной поверхности. Воздух прогревается от нагретой солнцем Земли.

    Почему с высотой понижается температура в горах

    О том, что в горах холодно и тяжело дышать, знают все. Я это испытала на себе в походе на Эльбрус.

    Такие явления имеют несколько причин.

    1. В горах воздух разрежен, поэтому плохо прогревается.
    2. Лучи солнца попадают на наклонную поверхность горы и прогревают ее гораздо меньше, чем землю на равнине.
    3. Белые шапки снега на горных вершинах отражают лучи солнца, и это тоже понижает температуру воздуха.


    Куртки нам очень пригодились. В горах, несмотря на август месяц, было холодно. У подножья горы раскинулись зеленые луга, а вверху лежал снег. Местные пастухи и овцы давно приспособились к жизни в горах. Их не смущает холодная температура, а их ловкости передвижения по горным тропинкам можно только позавидовать.


    Так наша поездка на Кавказ оказалась еще и познавательной. Мы прекрасно отдохнули и на личном опыте узнали, как с высотой температура воздуха понижается.

    Вопрос 1. От чего зависит распределение тепла по поверхности Земли?

    Распределение температуры воздуха над поверхностью Земли зависит от следующих четырех основных факторов: 1) широты, 2) высоты поверхности суши, 3) типа поверхности, в особенности от расположения суши и моря, 4) переноса тепла ветрами и течениями.

    Вопрос 2. В каких единицах измеряется температура?

    В метеорологии и в быту в качестве единицы измерения температуры используется шкала Цельсия или градусы Цельсия.

    Вопрос 3. Как называется прибор для измерения температуры?

    Термометр - прибор для измерения температуры воздуха.

    Вопрос 4. Как изменяется температура воздуха в течение суток, в течение года?

    Изменение температуры зависит от вращения Земли вокруг оси и соответственно от изменения количества солнечного тепла. Поэтому температура воздуха повышается или понижается в зависимости от расположения Солнца на небе. Изменение температуры воздуха в течение года зависит от положения Земли на орбите при вращении вокруг Солнца. Летом земная поверхность хорошо нагревается из-за прямого падения солнечных лучей.

    Вопрос 5. При каких условиях в конкретной точке на поверхности Земли температура воздуха будет оставаться всегда постоянной?

    Если Земля не будет вращаться вокруг солнца и своей оси и не будет переноса воздуха ветрами.

    Вопрос 6. По какой закономерности меняется температура воздуха с высотой?

    При подъёме над поверхностью Земли температура воздуха в тропосфере понижается на 6 С на каждом километре подъёма.

    Вопрос 7. Какая существует связь между температурой воздуха и географической широтой места?

    Количество света и тепла, получаемое земной поверхностью, постепенно убывает в направлении от экватора к полюсам из-за изменения угла падения солнечных лучей.

    Вопрос 8. Как и почему меняется температура воздуха в течение суток?

    Солнце встаёт на востоке, поднимается всё выше и выше, а затем начинает опускаться, пока не зайдёт за горизонт до следующего утра. Суточное вращение Земли приводит к тому, что угол падения солнечных лучей на поверхность Земли меняется. А значит, меняется и уровень нагрева этой поверхности. В свою очередь, и воздух, который нагревается от поверхности Земли, получает в течение дня разное количество тепла. А ночью количество тепла, получаемое атмосферой, ещё меньше. Вот в чём причина суточной изменчивости. В течение суток температура воздуха повышается с рассвета до двух часов дня, а потом начинает понижаться и достигает минимума за час до рассвета.

    Вопрос 9. Что такое амплитуда температур?

    Разность самой высокой и самой низкой температуры воздуха за какой-либо промежуток времени называется амплитудой температур.

    Вопрос 11. Почему самая высокая температура наблюдается в 14 ч, а самая низкая - в «предрассветный час»?

    Потому что в 14 часов Солнце максимально нагревает землю, а в предрассветный час Солнце еще не взошло, а за ночь температура все время опускалась.

    Вопрос 12. Всегда ли можно ограничиться знаниями только о средних значениях температуры?

    Нет, так как в определенных ситуациях необходимо знать точную температуру.

    Вопрос 13. Для каких широт и почему характерны самые низкие средние значения температуры воздуха?

    Для полярных широт, поскольку солнечные лучи доходят до поверхности под наименьшим углом.

    Вопрос 14. Для каких широт и почему характерны самые высокие средние значения температуры воздуха?

    Самые высокие средние значения температуры воздуха характерны для тропиков и экватора, так как там самый большой угол падения солнечных лучей.

    Вопрос 15. Почему температура воздуха с высотой уменьшается?

    Потому, что воздух прогревается от поверхности Земли, когда она имеет плюсовую температуру и получается чем выше воздушный слой, тем меньше он прогревается.

    Вопрос 16. Как вы думаете, какой месяц года отличается минимальными средними температурами воздуха в Северном полушарии? В Южном полушарии?

    Январь в среднем, самый холодный месяц года на большей части Северного полушария Земли, и самый теплый месяц года на большей части Южного полушария. Июнь в среднем, самый холодный месяц года на большей части Южного полушария.

    Вопрос 17. На какой из перечисленных параллелей высота полуденного солнца будет наибольшей: 20° с. ш., 50° ю. ш., 80 с. ш.?

    Вопрос 18. Определите температуру воздуха на высоте 3 км, если у поверхности Земли она составляет +24 °С?

    tн=24-6,5*3=4,5 ºС

    Вопрос 19. Рассчитайте среднее значение температуры по данным, представленным в таблице.

    (5+0+3+4+7+10+5) : 6 = 4,86; (-3 + -1) : 2 = -2; 4,86 - 2 = 2,86

    Ответ: средняя температура = 2,86 градусов.

    Вопрос 20. Используя приведённые в задании 2 табличные данные, определите амплитуду температур за указанный период.

    Амплитуда температур за указанный период составит 13 градусов.