Как найти золотое сечение прямоугольника. Кто открыл золотое сечение

Золотое сечение просто, как все гениальное. Представьте отрезок АВ, разделенный точкой С. Вам нужно лишь поставить точку С так, чтобы можно было составить равенство СВ/АС = АС/АВ = 0,618. То есть число, полученное при делении самого маленького отрезка СВ на длину среднего отрезка АС должно совпадать с числом, полученным при делении среднего отрезка АС на длину большого отрезка АВ. Числом этим будет 0,618. Это и есть золотая, или, как говорили в древности, божественная пропорция — ф (греческая «фи»). Индекс совершенства.

Трудно сказать, когда именно и кем было замечено, что следование этой пропорции дает ощущение гармонии. Но как только люди стали что-то создавать собственными руками, то интуитивно старались соблюсти это соотношение. Здания, возведенные с учетом ф , всегда выглядели более гармонично по сравнению с теми, в которых пропорции золотого сечения нарушены. Это неоднократно проверялось всевозможными тестами.

В геометрии существуют два объекта, неразрывно связанных с ф : правильный пятиугольник (пентаграмма) и логарифмическая спираль. В пентаграмме каждая линия, пересекаясь с соседней, делит ее в золотой пропорции, а в логарифмической спирали диаметры соседних витков относятся друг к другу так же, как отрезки АС и СВ на нашей прямой АВ. Но ф работает не только в геометрии. Считается, что части любой системы (например, протоны и нейтроны в ядре атома) могут находиться между собой в пропорции, соответствующей золотому числу. В этом случае, полагают ученые, система оказывается оптимальной. Правда, для научного подтверждения гипотезы требуется еще не один десяток лет исследований. Там, где ф нельзя измерить инструментальным методом, применяют так называемый числовой ряд Фибоначчи, в котором каждое последующее число является суммой двух предыдущих: 1, 1, 2, 3, 5, 8, 13, 21, 34, 55 и т. д. Особенность этого ряда заключается в том, что при делении любого его числа на следующее за ним получается результат, максимально приближенный к 0,618. Например, возьмем числа 2,3 и 5. 2/3 = 0,666, а 3/5 = 0,6. По сути, здесь присутствует то же соотношение, что и между составляющими нашего отрезка АВ. Таким образом, если измерительные характеристик какого-то объекта или явления можно вписать в числовой ряд Фибоначчи, это означает, что в их строении соблюдена золотая пропорция. А таких объектов и систем бессчетное множество, и современная наука открывает все новые и новые. Так что вопрос, не является ли ф действительно божественной пропорцией, на которой держится наш мир, вовсе не риторический.

Золотая пропорция в природе

Золотая пропорция соблюдена и в природе, причем уже на самых простейших уровнях. Взять например, белковые молекулы, из которых состоят ткани всех живых организмов. Отличаются молекулы друг от друга по массе, которая зависит от числа входящих в них аминокислот. Не так давно было установлено, что наиболее распространенными являются белки с массами 31; 81,2; 140,6; 231; 319 тыс. единиц. Ученые отмечают, что этот ряд почти соответствует ряду Фибоначчи — 3, 8,13, 21, 34 (здесь ученые не учитывают десятичную разницу этих рядов).

Наверняка при дальнейших исследованиях будет найден белок, масса которого будет коррелировать с 5. Эту уверенность дает даже устройство простейших — многие вирус имеют пентагональную структуру. Стремятся к ф и пропорции химических элементов. Ближе всего к ней плутоний: соотношение числа протонов в его ядре с нейтронами равно 0,627. Дальше всего — водород. В свою очередь, число атомов в химических соединениях удивительно часто кратно числам ряда Фибоначчи. Особенно это касается окислов урана и соединений металлов.

Если вы разрежете нераскрывшуюся почку дерева, то обнаружите там две спирали, направленные в разные стороны. Это зачатки листьев. Соотношение количества витков между этими двумя спиралями всегда будет 2/3, или 3/5, или 5/8 и т. д. То есть опять по Фибоначчи. Кстати, ту же самую закономерность мы видим и в расположении семечек подсолнуха, и в строении шишек хвойных деревьев. Но вернемся к листьям. Когда они раскроются, то не потеряют своей связи с ф , поскольку будут располагаться на стебле или ветке по логарифмической спирали. Но и это еще не все. Существует понятие «угла расхождения листьев» — это угол, под которым находятся листья относительно друг друга. Вычислить этот угол не составляет большого труда. Представьте, что в стебель вписана призма с пятиугольным основанием. Теперь пустите по стеблю спираль. Точки, в которых спираль будет касаться граней призмы, соответствуют тем точкам, откуда растут листья. А теперь от первого листа проведите прямую линию вверх и посмотрите, сколько листьев будет лежать на этой прямой. Их число в биологии обозначается буквой n (в нашем случае это два листа). Теперь посчитайте количество витков, описываемых спиралью вокруг стебля. Полученное число называется листовым циклом и обозначается буквой p (в нашем случае оно равно 5). Теперь умножаем максимальный угол — 360 градусов на 2 (n) и делим на 5 (p). Получаем искомый угол расхождения листьев — 144 градуса. Соотношение n и p пиру каждого растения или дерева свое, но все они не выходят из ряда Фибоначчи: 1/2; 2/5; 3/8; 5/13 и т. д. Биологи установили, что углы, образованные по этим пропорциям, в бесконечности стремятся к 137 градусам — оптимальному углу расхождения, при котором равномерно распределяется солнечный свет по веткам и листьям. Да и в самих листьях мы можем заметить соблюдение золотой пропорции, как, впрочем, и в цветках — легче всего ее заметить в тех, что имеют форму пентаграммы.

ф не обошла и животный мир. По мнению ученых, присутствие золотой пропорции в строении скелета живых организмов решает очень важную задачу. Так достигается максимально возможная прочность остова при минимально возможном весе, что, в свою очередь, позволяет рационально распределить материю по частям тела. Это касается почти всех представителей фауны. Так, морские звезды — совершенные пятиугольники, а раковины многих моллюсков представляют собой логарифмические спирали. Соотношение длины хвоста стрекозы к ее корпусу тоже равно ф . Да и комар не прост: у него три пары ног, брюшко делится на восемь сегментов, а на голове пять усиков-антенн — все тот же ряд Фибоначчи. Число позвонков у многих животных, например у кита или лошади, равно 55. Число ребер — 13, а количество костей в конечностях — 89. А конечности сами имеют трехчастную структуру. Общее же число костей этих животных, считая зубы (которых, 21 пара) и косточки слухового аппарата,- 233 (число Фибоначчи). Чему тут удивляться, когда даже яйцо, из которого, как многие народы считают, все и произошло, можно вписать в прямоугольник золотого сечения — длина такого прямоугольника в 1,618 раза превышает его ширину.

©При частичном или полном использовании данной статьи - активная гиперссылка ссылка на познавательный журнал сайт ОБЯЗАТЕЛЬНА

Кандидат технических наук В. БЕЛЯНИН, ведущий научный сотрудник РНЦ "Курчатовский институт", Е. РОМАНОВА, студентка МАДИ (ГТУ)

Наука и жизнь // Иллюстрации

Наука и жизнь // Иллюстрации

Наука и жизнь // Иллюстрации

Наука и жизнь // Иллюстрации

Наука и жизнь // Иллюстрации

Наука и жизнь // Иллюстрации

Наука и жизнь // Иллюстрации

Наука и жизнь // Иллюстрации

Наука и жизнь // Иллюстрации

Наука и жизнь // Иллюстрации

Наука и жизнь // Иллюстрации

Золотую пропорцию в школе не "проходят". И когда один из авторов предлагаемой ниже статьи (кандидат технических наук В. Белянин) рассказал о золотом сечении абитуриентке, собравшейся поступать в МАДИ, в процессе подготовки к экзаменам в институт, задача неожиданно вызвала живой интерес и массу вопросов, на которые "с ходу" не было ответов. Решили искать их вместе, и тогда обнаружились тонкости в золотой пропорции, ускользавшие от исследователей ранее. Совместное творчество привело к работе, которая лишний раз подтверждает созидательные возможности молодежи и вселяет надежду, что язык науки утерян не будет.

Узоры математики, как и узоры художника или узоры поэта, должны быть красивы; идеи, как и краски или слова, должны сочетаться гармонически. Красота является первым критерием: в мире нет места для безобразной математики.
Дж. Х. Харди

Красота математической задачи служит одним из важнейших стимулов ее нескончаемого развития и причиной порождения многочисленных приложений. Порой проходят десятки, сотни, а иногда и тысячи лет, но люди вновь и вновь находят неожиданные повороты в хорошо известном решении и его интерпретации. Одной из таких долгоживущих и увлекательных задач оказалась задача о золотом сечении (ЗС), отражающая элементы изящества и гармонии окружающего нас мира. Нелишне напомнить, кстати, что, хотя сама пропорция была известна еще Евклиду, термин "золотое сечение" ввел Леонардо да Винчи (см. "Наука и жизнь" ).

Геометрически золотое сечение подразумевает деление отрезка на две неравные части так, чтобы большая часть была средним пропорциональным между всем отрезком и меньшей частью (рис. 1).

Алгебраически это выражается следующим образом:

Исследование этой пропорции еще до ее решения показывает, что между отрезками a и b существуют по крайней мере два удивительных соотношения. Например, из пропорции (1) легко получается выражение,

которое устанавливает пропорцию между отрезками a , b , их разностью и суммой. Поэтому о золотом сечении можно сказать иначе: два отрезка находятся в гармоничном соотношении, если их разность относится к меньшему отрезку так, как больший отрезок относится к их сумме.

Второе соотношение получается, если исходный отрезок принять равным единице: a + b = 1, что очень часто используется в математике. В таком случае

a 2 - b 2 = a - b = ab .

Из этих результатов следуют два удивительных соотношения между отрезками а и b :

a 2 - b 2 = a - b = ab ,(2)

которые будут использованы в дальнейшем.

Перейдем теперь к решению пропорции (1). На практике используют две возможности.

1. Обозначим отношение a /b через. Тогда получим уравнение

x 2 - x - 1 = 0, (3)

Обычно рассматривают только положительный корень x 1 , дающий простое и наглядное деление отрезка в заданной пропорции. Действительно, если принять целый отрезок за единицу, то, используя значение этого корня x 1 , получим a ≈ 0,618, b ≈ 0,382.

Именно положительный корень x 1 уравнения (3) наиболее часто называют золотой пропорцией или пропорцией золотого сечения. Соответствующее геометрическое деление отрезка называют золотым сечением (точка С на рис. 1).

Для удобства дальнейшего изложения обозначим x 1 = D . Общепризнанного обозначения для золотого сечения до сих пор нет. Обусловлено это, видимо, тем, что под ним понимают иногда и другое число, о чем будет сказано ниже.

Оставляемый по обыкновению в стороне отрицательный корень x 2 приводит к менее наглядному делению отрезка на две неравные части. Дело в том, что он дает делящую точку С , которая лежит вне отрезка (так называемое внешнее деление). Действительно, если a + b = 1, то, используя корень x 2 , получим a ≈ -1,618, b ≈ 2,618. Поэтому отрезок a необходимо откладывать в отрицательном направлении (рис. 2).

2. Второй вариант решения пропорции (1) принципиально не отличается от первого. Будем считать неизвестным отношение b /a и обозначим его через y . Тогда получим уравнение

y 2 + y -1 = 0 , (4)

которое имеет иррациональные корни

Если a + b = 1, то, используя корень y 1 , получим a = y 1 ≈ 0,618, b ≈ 0,382. Для корня y 2 получим a ≈ -1,618, b ≈ 2,618. Геометрическое деление отрезка в пропорции золотого сечения с использованием корней y 1 и y 2 полностью идентично предыдущему варианту и соответствует рис. 1 и 2.

Положительный корень y 1 непосредственно дает искомое решение задачи, и его также называют золотой пропорцией .

Для удобства обозначим значение корня y 1 = d.

Таким образом, в литературе золотую пропорцию математически выражают числом D 1,618 или числом d 0,618, между которыми существуют две изумительные связи:

Dd = 1 и D - d = 1. (5)

Доказано, что другой подобной пары чисел, обладающих этими свойствами, не существует.

Используя оба обозначения для золотой пропорции, запишем решения уравнений (3) и (4) в симметричном виде: = D , = -d , = d , = -D .

Необычные свойства золотого сечения достаточно подробно описаны в литературе . Они настолько удивительны, что покоряли разум многих выдающихся мыслителей и создали вокруг себя ореол таинственности.

Золотая пропорция встречается в конфигурации растений и минералов, строении частей Вселенной, музыкальном звукоряде. Она отражает глобальные принципы природы, пронизывая все уровни организации живых и неживых объектов. Ее используют в архитектуре, скульптуре, живописи, науке, вычислительной технике, при проектировании предметов быта. Творения, несущие в себе конфигурацию золотого сечения, представляются соразмерными и согласованными, всегда приятны взгляду, да и сам математический язык золотой пропорции не менее изящен и элегантен.

Кроме равенств (5) из соотношения (2) можно выделить три интересные соотношения, которые обладают определенным совершенством, выглядят вполне привлекательно и эстетично:

(6)

Величие и глубину природы можно ощущать не только, например, при созерцании звезд или горных вершин, но и вглядываясь в некоторые удивительные формулы, очень ценимые математиками за их красоту. К ним можно отнести изящные соотношения золотой пропорции, фантастическую формулу Эйлера e iπ = -1 (где i = √-1), формулу, определяющую знаменитое число Непера (основание натуральных логарифмов): e = lim(1 + 1/n ) n = 2,718 при n → ∞, и многие другие.

После решения пропорции (1) ее идея кажется довольно простой, но, как это часто бывает со многими на первый взгляд простыми задачами, в ней скрыто немало тонкостей. Одной из таких замечательных тонкостей, мимо которой до сих пор проходили исследователи, является связь корней уравнений (3) и (4) с углами трех замечательных треугольников.

Чтобы убедиться в этом, рассмотрим, каким образом одномерный отрезок, разделенный в пропорции золотого сечения, может быть легко преобразован в двумерный образ в виде треугольника. Для этого, используя вначале рис. 1, отложим на отрезке АВ длину отрезка a дважды - от точки А в сторону точки В и, наоборот, от точки В в сторону А . Получим две точки С 1 и С 2 , делящие отрезок АВ с разных концов в пропорции золотого сечения (рис. 3). Считая равные отрезки АС 1 и ВС 2 радиусами, а точки А и В центрами окружностей, проведем две дуги до их пересечения в верхней точке С . Соединив точки А и С , а также В и С, получим равнобедренный треугольник АВС со сторонами АВ = a + b = 1, АС = = ВС = a = d ≈ 0,618. Величину углов при вершинах А и В обозначим α, при вершине С - β. Вычислим эти углы.

По теореме косинусов

(АВ ) 2 = 2(АС ) 2 (1 - cos β).

Подставив численные значения отрезков АВ и АС в эту формулу, получим

Аналогично получаем

(8)

Выход золотой пропорции на двумерный образ позволил связать корни уравнений (3) и (4) с углами треугольника АВС , который можно назвать первым треугольником золотой пропорции.

Выполним аналогичное построение, используя рис. 2. Если на продолжении отрезка АВ отложить от точки В вправо отрезок, равный по величине отрезку a , и повернуть вокруг центров А и В вверх оба отрезка как радиусы до их соприкосновения, то получим второй треугольник золотой пропорции (рис. 4). В этом равнобедренном треугольнике сторона АВ = a + b = 1, сторона АС = ВС = D ≈1,618, и поэтому по формуле теоремы косинусов получаем

(9)

Угол a при вершине С равен 36 о и связан с золотой пропорцией соотношением (8). Как и в предыдущем случае, углы этого треугольника связаны с корнями уравнений (3) и (4).

Второй треугольник золотой пропорции служит основным составляющим элементом правильного выпуклого пятиугольника и задает пропорции правильного звездчатого пятиугольника (пентаграммы), свойства которых подробно рассмотрены в книге .

Звездчатый пятиугольник - фигура симметричная, и в то же время в соотношениях ее отрезков проявляется асимметрическая золотая пропорция. Подобное сочетание противоположностей всегда притягивает глубоким единством, познание которого позволяет проникнуть в скрытые законы природы и понять их исключительную глубину и гармонию. Пифагорейцы, покоренные созвучием отрезков в звездчатом пятиугольнике, выбрали его символом своего научного сообщества.

Со времен астронома И. Кеплера (XVII век) иногда высказываются различные точки зрения относительно того, что обладает большей фундаментальностью - теорема Пифагора или золотая пропорция. Теорема Пифагора лежит в основании математики, это один из ее краеугольных камней. Золотое сечение лежит в основании гармонии и красоты мироздания. На первый взгляд оно несложно для понимания и не обладает значительной основательностью. Тем не менее некоторые его неожиданные и глубокие свойства постигаются только в последнее время , что говорит о необходимости с почтением относиться к его скрытой тонкости и возможной универсальности. Теорема Пифагора и золотая пропорция в своем развитии тесно переплетаются одна с другой и геометрическими и алгебраическими свойствами. Между ними нет ни пропасти, ни принципиальных различий. Они не конкурируют, у них разные предназначения.

Вполне возможно, что обе точки зрения равноправны, так как существует прямоугольный треугольник, содержащий в себе разнообразные особенности золотой пропорции. Другими словами, существует геометрическая фигура, достаточно полно объединяющая два математических восхитительных факта - теорему Пифагора и золотую пропорцию.

Чтобы построить такой треугольник, достаточно продолжить сторону ВС треугольника АВС (рис. 4) до пересечения в точке Е с перпендикуляром, восстановленным в точке А к стороне АВ (рис. 5).

Во внутреннем равнобедренном треугольнике АСЕ угол φ (угол АСЕ ) равен 144 о, а угол ψ (углы ЕАС и АЕС ) равен 18 о. Сторона АС = СЕ = СВ = D . Используя теорему Пифагора, легко получить, что длина катета

Используя этот результат, легко приходим к соотношению

Итак, найдена непосредственная связь корня y 2 уравнения (4) - последнего из корней уравнений (3) и (4) - с углом 144 о. В связи с этим треугольник АСЕ можно назвать третьим треугольником золотой пропорции.

Если в замечательном прямоугольном треугольнике АВЕ провести биссектрису угла САВ до пересечения со стороной ЕВ в точке F , то увидим, что вдоль стороны АВ располагаются четыре угла: 36 о, 72 о, 108 о и 144 о, с которыми корни уравнений золотой пропорции имеют непосредственную связь (соотношения (7) - (10)). Таким образом, в представленном прямоугольном треугольнике содержится вся плеяда равносторонних треугольников, обладающих особенностями золотого сечения. Кроме того, весьма примечательно то, что на гипотенузе любые два отрезка, ЕС = D и СF = 1,0 находятся в соотношении золотой пропорции с = d . Угол ψ связан с корнями D и d уравнений (3) и (4) соотношениями

.

В основу представленных выше построений равнобедренных треугольников, углы которых связаны с корнями уравнений золотой пропорции, положены исходный отрезок АВ и его части a и b . Однако золотое сечение позволяет моделировать не только описанные выше треугольники, но и различные другие геометрические фигуры, несущие в себе элементы гармоничных отношений.

Приведем два примера подобных построений. В первом - рассмотрим отрезок АВ , представленный на рис. 1. Пусть точка С - центр окружности, отрезок b - радиус. Проведем радиусом b окружность и касательные к ней из точки А (рис. 6). Соединим точки касания E и F с точкой С . В результате получим асимметричный ромб АЕСF , в котором диагональ АС делит его на два равных прямоугольных треугольника АСЕ и АСF .

Обратим более пристальное внимание на один из них, например на треугольник АСЕ . В этом треугольнике угол АЕС - прямой, гипотенуза АС = a , катет СЕ = b и катет АЕ = √ab ≈ 0,486, что следует из соотношения (2). Следовательно, катет АЕ является средним геометрическим (пропорциональным) между отрезками a и b , то есть выражает геометрический центр симметрии между числами a ≈ 0,618 и b ≈ 0,382.

Найдем значения углов этого треугольника:

Как и в предыдущих случаях, углы δ и ε связаны через косинус с корнями уравнений (3) и (4).

Заметим, что асимметричный ромб, подобный ромбу AECF , получается при проведении касательных из точки В к окружности радиуса a и c центром в точке А .

Асимметричный ромб AECF получен иным путем в книге при анализе формообразования и явлений роста в живой природе. Прямоугольный треугольник АЕС назван в этой работе "живым" треугольником, так как способен порождать наглядные образы, соответствующие различным структурным элементам природы, и служить ключом при построении геометрических схем начала развития некоторых живых организмов.

Второй пример связан с первым и третьим треугольниками золотого сечения. Образуем из двух равных первых треугольников золотой пропорции ромб с внутренними углами 72 о и 108 о. Аналогично объединим два равных третьих треугольника золотой пропорции в ромб с внутренними углами 36 о и 144 о. Если стороны этих ромбов равны между собой, то ими можно заполнить бесконечную плоскость без пустот и перекрытий. Соответствующий алгоритм заполнения плоскости разработал в конце 70-х годов ХХ века физик-теоретик из Оксфордского университета Р. Пенроуз. Причем выяснилось, что в получающейся мозаике невозможно выделить элементар ную ячейку с целым числом ромбов каждого вида, трансляция которой позволяла бы получить всю мозаику. Но самым замечательным оказалось то, что в бесконечной мозаике Пенроуза отношение числа "узких" ромбов к числу "широких" точно равно значению золотой пропорции d = 0,61803...!

В этом примере удивительным образом соединились все корни золотого сечения, выраженные через углы, с одним из случаев нетривиального заполнения бесконечной плоскости двумя элементарными фигурами - ромбами.

В заключение отметим, что приведенные выше разнообразные примеры связи корней уравнений золотой пропорции с углами треугольников иллюстрируют тот факт, что золотая пропорция более емкая задача, чем это представлялось ранее. Если прежде сферой приложения золотой пропорции считались в конечном итоге соотношения отрезков и различные последовательности, связанные с численными значениями ее корней (числа Фибоначчи), то теперь обнаруживается, что золотая пропорция может генерировать разнообразные геометрические объекты, а корни уравнений имеют явное тригонометрическое выражение.

Авторы отдают себе отчет, что высказанная выше точка зрения относительно изящества математических соотношений, связанных с золотой пропорцией, отражает личные эстетические переживания. В современной философской литературе понятия эстетики и красоты трактуются довольно широко и используются скорее на интуитивном уровне. Эти понятия отнесены главным образом к искусству. Содержание научного творчества в эстетическом плане в литературе практически не рассматривается. В первом приближении к эстетическим параметрам научных исследований можно отнести их сравнительную простоту, присущую им симметрию и способность порождать наглядные образы. Всем этим эстетическим параметрам отвечает задача, получившая название "золотая пропорция". В целом же проблемы эстетики в науке далеки от своего решения, хотя и представляют большой интерес.

Интуитивно чувствуется, что золотая пропорция все еще скрывает свои тайны. Некоторые из них, вполне возможно, лежат на поверхности, ожидая необычного взгляда своих новых исследователей. Знание свойств золотой пропорции может служить творческим людям хорошим фундаментом, придавать им уверенность и в науке и в жизни .

ЛИТЕРАТУРА

1. Шевелев И. Ш., Марутаев И. А., Шмелев И. П. Золотое сечение: Три взгляда на природу гармонии. - М.: Стройиздат, 1990. - 343 с.

2. Стахов А. П. Коды золотой пропорции. - М.: Радио и связь, 1984. - 152 с.

3. Васютинский Н. А. Золотая пропорция. - М.: Молодая гвардия, 1990. - 238 с.

4. Коробко В. И. Золотая пропорция: Некоторые философские аспекты гармонии. - М. - Орел: 2000. - 204 с.

5. Урманцев Ю. А. Золотое сечение // Природа, 1968, № 11.

6. Попков В. В., Шипицын Е. В. Золотое сечение в цикле Карно // УФН, 2000, т. 170, № 11.

7. Константинов И. Фантазии с додекаэдром // Наука и жизнь, 2001, № 2.

8. Шевелев И. Ш. Геометрическая гармония // Наука и жизнь, 1965, № 8.

9. Гарднер М. От мозаик Пенроуза к надежным шифрам . - М. : Мир, 1993.

Говорят, что “божественная пропорция” заложена в природе, и во многих вещах вокруг нас. Вы можете найти ее в цветах, ульях, морских раковинах, и даже нашем теле.

Эта божественная пропорция, также известная как золотое сечение, божественное сечение, или золотая пропорция может быть применена к различным видам искусства и обучения. Ученые утверждают, что чем ближе объект к золотому сечению, тем лучше человеческий мозг воспринимает его.

С тех пор как это соотношение было открыто, многие художники и архитекторы применяли его в своих работах. Вы можете найти золотое сечение в нескольких шедеврах эпохи Возрождения, архитектуре, живописи, и многом другом. В результате - красивый и эстетически приятный шедевр.

Немногие знают, в чем заключается тайна золотого сечения, что так радует наши глаза. Многие полагают, что то, что она появляется везде и является “универсальной” пропорцией, заставляет нас принять ее как что-то логическое, гармоничное и органичное. Другими словами, оно просто “чувствует” то, что нам нужно.

Итак, что такое золотое сечение?

Золотое сечение, также известное как “фи” по-гречески, это математическая константа. Оно может быть выражено уравнением a/b=a+b/a=1,618033987, где a больше, чем b. Это также можно объяснить последовательностью Фибоначчи, другой божественной пропорцией. Последовательность Фибоначчи начинается с 1 (некоторые говорят с 0) и добавляет к нему предыдущее число, чтобы получить последующее (т.е. 1, 1, 2, 3, 5, 8, 13, 21 …)

Если вы попытаетесь найти частное от деления двух последующих чисел Фибоначчи (т.е. 8/5 или 5/3), результат очень близок к золотому сечению 1,6 или φ (фи).

Золотая спираль создается с помощью золотого прямоугольника. Если у вас есть прямоугольник из квадратов 1, 1, 2, 3, 5 и 8 соответственно, как показано на рисунке выше, вы можете приступить к строительству золотого прямоугольника. Используя сторону квадрата, как радиус, вы создаете дугу, которая касается точек квадрата по диагонали. Повторите эту процедуру с каждым квадратом в золотом треугольнике, и в конечном итоге вы получите золотую спираль.

Где мы можем увидеть его в природе

Золотое сечение и последовательность Фибоначчи можно найти в лепестках цветов. У большинства цветков количество лепестков сводится к двум, трем, пяти или больше, что походит на золотое сечение. Например, у лилий 3 лепестка, у лютиков 5, у цветков цикория 21, а у ромашек 34. Вероятно, семена цветков также следуют золотому сечению. Например, семена подсолнечника прорастают из центра и растут к внешней стороне, заполняя головку семени. Обычно они спиралевидные и имеют сходство с золотой спиралью. Более того, количество семян, как правило, сводится к числам Фибоначчи.

Руки и пальцы также являются примером золотого сечения. Посмотрите ближе! Основание ладони и кончик пальца разделен частями (костьми). Соотношение одной части в сравнении к другой всегда 1,618! Даже предплечья с руками находятся в таком же соотношении. И пальцы, и лицо, и можно продолжать список…

Применение в искусстве и архитектуре

Парфенон в Греции, как утверждается, был построен с использованием золотых пропорций. Считается, что размерные соотношения высоты, ширины, колонн, расстояния между столбами, и даже размер портика близки к золотому сечению. Это возможно потому, что здание выглядит пропорционально идеально, и оно было таким с древних времен.

Леонардо Да Винчи был также поклонником золотого сечения (и многих других любопытных предметов, собственно говоря!). Дивная красота Мона Лизы может быть связана с тем, что ее лицо и тело представляют собой золотое сечение, как и реальные человеческие лица в жизни. Кроме того, цифры в картине “Тайная вечеря” Леонардо Да Винчи расположены в порядке, который используется в золотом сечении. Если начертить золотые прямоугольники на холсте, Иисус окажется как раз в центральной доле.

Применение в дизайне логотипов

Неудивительно, что вы также можете найти использование золотого сечения во многих современных проектах, в частности, дизайне. Сейчас давайте сосредоточимся на том, как это может быть использовано в дизайне логотипа. Во-первых, рассмотрим некоторые из самых известных в мире брендов, которые использовали золотое сечение для совершенствования своих логотипов.

Видимо, Apple использовал круги из чисел Фибоначчи, соединив и обрезав формы для получения логотипа Apple. Неизвестно, было ли это сделано намеренно или нет. Тем не менее, в результате получился идеальный и визуально эстетичный дизайн логотипа.

Логотип Toyota использует соотношение a и b, формируя сетку, в которой образуются три кольца. Обратите внимание, как этот логотип использует прямоугольники вместо кругов для создания золотого сечения.

Логотип Pepsi создан двумя пересекающимися кругами, один больше другого. Как показано на рисунке выше, больший круг пропорционален в соотношении к меньшему - вы уже догадались! Их последний нерельефный логотип - простой, эффектный и красивый!

Кроме Toyota и Apple, логотипы некоторых других компаний, таких как, BP, iCloud, Twitter, и Grupo Boticario, как полагают, также использовали золотое сечение. И мы все знаем, насколько известны эти логотипы - все потому, что изображение сразу всплывает в памяти!

Вот как вы можете применить его в своих проектах

Создайте эскиз золотого прямоугольника, как показано выше желтым цветом. Этого можно достичь путем построения квадратов с высотой и шириной из чисел, принадлежащих золотому сечению. Начните с одного блока и поместите другой рядом с ним. А другой квадрат, чья площадь равна тем двум, поместите над ними. Вы автоматически получите сторону из 3 блоков. После построения этой конструкции из трех блоков, в конечном итоге у вас будет сторона из 5 четырехугольников, из которой можно сделать другую (площадью в 5 блоков) коробку. Это может продолжаться сколько угодно, пока вы не найдете тот размер, который вам нужен!

Прямоугольник может перемещаться в любом направлении. Выделите мелкие прямоугольники и используйте каждый из них, чтобы собрать макет, который будет служить в качестве сетки дизайна логотипа.

Если логотип более округлый, то вам потребуется круговая версия золотого прямоугольника. Вы можете добиться этого начертанием кругов, пропорциональных числам Фибоначчи. Создайте золотой прямоугольник, используя только круги (это означает, что самый большой круг будет иметь диаметр 8, а у круга поменьше будет диаметр 5, и так далее). Теперь разделите эти круги и разместите их так, чтобы вы могли сформировать основную схему для вашего логотипа. Вот пример логотипа Twitter:

Примечание: Вам не обязательно чертить все круги или прямоугольники золотого сечения. Вы также можете использовать один размер неоднократно.

Как применять его в дизайне текста

Это проще, чем проектирование логотипа. Простое правило для применения золотого сечения в тексте заключается в том, что последующий больший или меньший текст должен соответствовать Фи. Давайте разберем этот пример:

Если размер моего шрифта - 11, то подзаголовок должен быть написан в более крупном шрифте. Умножаю шрифт текста на число золотого сечения, чтобы получить большее число (11*1,6=17). Значит подзаголовок должен быть написан в 17 размере шрифта. А теперь заголовок или название. Умножу подзаголовок на пропорцию и получу 27 (1*1,6=27). Вот так! Ваш текст теперь пропорционален золотому сечению.

Как применить его в веб-дизайне

А здесь немного сложнее. Вы можете оставаться верными золотому сечению даже в веб-дизайне. Если вы опытный веб-дизайнер, вы уже догадались, где и как ее можно применить. Да, мы можем эффективно использовать золотое сечение и применить его к сеткам наших веб-страниц и макетам пользовательского интерфейса.

Возьмите общее число сетки пикселей за ширину или высоту и используйте его для построения золотого прямоугольника. Разделите наибольшую ширину или длину для получения меньших чисел. Это может быть шириной или высотой вашего основного контента. То, что осталось, может быть боковой панелью (или нижней панелью, если вы применили его к высоте). Теперь продолжайте использовать золотой прямоугольник для дальнейшего применения его к окнам, кнопкам, панелям, изображениям и тексту. Вы также можете построить полную сетку, основанную на маленьких версиях золотого прямоугольника расположенных как горизонтально, так и вертикально для создания более маленьких объектов интерфейса, которые пропорциональны золотому прямоугольнику. Для получения пропорций вы можете использовать этот калькулятор.

Спираль

Вы также можете использовать золотую спираль, чтобы определить, где разместить контент на вашем сайте. Если ваша домашняя страница загружается с графическим контентом, как, например, на веб-сайте онлайн магазина или блога фотографий, вы можете воспользоваться золотым методом спирали, который используют многие художники в своих работах. Задумка в том, чтобы поместить наиболее ценный контент в центре спирали.

Контент со сгруппированным материалом тоже может быть размещен при помощи золотого прямоугольника. Это означает, что чем ближе спираль движется к центральным квадратам (к одному квадратному блоку), тем “плотнее” там содержимое.

Вы можете использовать эту технику, чтобы обозначить расположение вашего заголовка, изображений, меню, панели инструментов, окна поиска и других элементов. Twitter славится не только использованием золотого прямоугольника в дизайн логотипа, но и задействовал его в веб-дизайне. Как? Благодаря использованию золотого прямоугольника, или, другими словами концепцией золотой спирали, в странице профиля пользователей.

Но нелегко будет проделать такое на платформах CMS, где автор материала определяет расположение вместо веб-дизайнера. Золотое сечение подходит WordPress и другим дизайнам блога. Это, вероятно, потому, что боковая панель почти всегда присутствует в дизайне блога, который хорошо вписывается в золотой прямоугольник.

Более простой способ

Очень часто дизайнеры опускают сложную математику и применяют так называемое “правило третей”. Его можно достичь путем деления площади на три равные части по горизонтали и вертикали. В результате - девять равных частей. Линия пересечения может быть использована в качестве фокусного центра формы и дизайна. Вы можете поместить ключевую тему или основные элементы на один или все фокусные центры. Фотографы также используют эту концепцию для плакатов.

Чем ближе прямоугольники к соотношению 1:1,6, тем приятнее воспринимается картина человеческим мозгом (так как это ближе к золотому сечению).

Каждый человек, сталкивающийся с геометрией объектов в пространстве, хорошо знаком с методом золотого сечения. Его применяют в искусстве, дизайне интерьеров и архитектуре. Еще в прошлом столетии золотое сечение оказалось таким популярным, что теперь многие сторонники мистического видения мира дали ему другое название - универсальное гармоническое правило. Особенности этого метода стоит рассмотреть подробнее. Это поможет узнать, почему он пользуется интересом сразу в нескольких сферах деятельности - искусстве, архитектуре, дизайне.

Суть универсальной пропорции

Принцип золотого сечения является всего лишь зависимостью чисел. Однако многие относятся к нему предвзято, приписывая этому явлению какие-то мистические силы. Причина кроется в необычных свойствах правила:

  • Многие живые объекты обладают пропорциями туловища и конечностей, приближенными к показаниям золотого сечения.
  • Зависимости 1,62 или 0,63 определяют отношения размеров лишь для живых существ. Объекты, относящиеся к неживой природе, очень редко соответствуют значению гармонического правила.
  • Золотые пропорции строения туловища живых существ представляют собой неотъемлемое условие выживания многих биологических видов.

Золотое сечение можно найти в строении тел различных животных, стволов деревьев и корней кустарников. Сторонники универсальности этого принципа стараются доказать, что его значения жизненно важны для представителей живого мира.

Можно объяснить метод золотого сечения, используя образ куриного яйца. Отношение отрезков от точек скорлупы, в равной степени удаленных от центра тяжести, равно показателю золотого сечения. Самым важным для выживания птиц показателем яйца является именно его форма, а не прочность скорлупы.

Важно! Золотое сечение рассчитано на основе измерений множества живых объектов.

Происхождение золотого сечения

Об универсальном правиле было известно еще математикам Древней Греции. Ее использовал Пифагор и Евклид. В известном архитектурном шедевре - пирамиде Хеопса отношение размеров основной части и длины сторон, а также барельефов и декоративных деталей соответствуют гармоническому правилу.

Метод золотого сечения взяли на вооружение не только архитекторы, но и художники. Тайна гармонической пропорции считалась одной из величайших загадок.

Первым, документально заверившим универсальную геометрическую пропорцию, был монах-францисканец Лука Пачоли. Его способности к математике были блестящи. Широкое признание золотое сечение получило после публикации результатов исследований золотого сечения Цейзинга. Он изучал пропорции тела человека, древние памятники скульптуры, растения.

Как рассчитали золотое сечение

Разобраться, что такое золотое сечение, поможет объяснение, основанное на длинах отрезков. К примеру, внутри большого находится несколько маленьких. Тогда длины небольших отрезков относятся к общей длине большого отрезка, как 0,62. Такое определение помогает разобраться, на сколько частей можно поделить определенную линию, чтобы она соответствовала гармоническому правилу. Еще один плюс использования этого метода - можно узнать, каким должно быть отношение самого большого отрезка к длине всего объекта. Это соотношение равняется 1,62.

Такие данные можно представить, как пропорции измеряемых объектов. Сначала их выискивали, подбирая опытным путем. Однако теперь точные соотношения известны, поэтому построить объект в соответствии с ними не составит труда. Золотое сечение находят такими путями:

  • Построить прямоугольный треугольник. Разбить одну из его сторон, а затем провести перпендикуляры с секущими дугами. При проведении вычислений следует от одного конца отрезка построить перпендикуляр, равный ½ его длины. Затем достраивают прямоугольный треугольник. Если отметить точку на гипотенузе, которая покажет длину перпендикулярного отрезка, то радиус, равняющийся оставшейся части линии, рассечет основание на две половины. Получившиеся линии будут соотноситься друг с другом согласно золотому сечению.
  • Универсальные геометрические значения получают и другим способом - выстраивая пентаграмму Дюрера. Она является звездой, которая помещена в окружность. В ней находится 4 отрезка, длины которых соответствуют правилу золотого сечения.
  • В архитектуре гармоническая пропорция применяется в модифицированном виде. Для этого прямоугольный треугольник следует разбивать по гипотенузе.

Важно! Если сравнивать с классическим понятием метода золотого сечения, версия для архитекторов имеет соотношение 44:56.

Если в традиционном толковании гармонического правила для графики, его рассчитывали как 37:63, то для архитектурных сооружений чаще использовали 44:56. Это обусловлено необходимостью сооружать высотные постройки.

Секрет золотого сечения

Если в случае с живыми объектами золотое сечение, проявляющееся в пропорциях тела людей и животных можно объяснить необходимостью приспосабливаться к среде, то в использование правила оптимальных пропорций в 12 веке для постройки домов было в новинку.

Парфенон, сохранившийся со времен Древней Греции, был возведен по методу золотого сечения. Множество замков вельмож средних веков создавали с параметрами, соответствующими гармоническому правилу.

Золотое сечение в архитектуре

Множество построек древности, которые сохранились до сих пор, служат подтверждением тому, что архитекторы из эпохи средневековья были знакомы с гармоническим правилом. Очень хорошо заметно стремление соблюсти гармоническую пропорцию при сооружении церквей, значимых общественных зданий, резиденций королевских особ.

К примеру, собор Парижской Богоматери возведен таким образом, что многие из его участков соотносится с правилом золотого сечения. Можно найти немало произведений архитектуры 18 века, которые были построены в согласии с этим правилом. Правило применяли и многие русские архитекторы. Среди них был и М. Казаков, который создавал проекты усадеб и жилых зданий. Он проектировал здание сената и Голицынскую больницу.

Естественно, дома с таким отношением частей возводили и до открытия правила золотого сечения. Например, к таким зданиям относится церковь Покрова на Нерли. Красота здания приобретает еще большую загадочность, если учесть, что здание покровской церкви было возведено в XVIII веке. Однако современный вид постройка приобрела после реставрации.

В трудах о золотом сечении упоминается, что в архитектуре восприятие объектов зависит от того, кто наблюдает. Пропорции, образованные при помощи золотого сечения, дают максимально спокойное соотношение частей строения относительно друг друга.

Ярким представителем из ряда строений, соответствующих универсальному правилу, является памятник архитектуры Парфенон, возведенный еще в пятом веке до н. э. Парфенон устроен с восьмью колоннами по меньшим фасадам и с семнадцатью - по большим. Храм возведен из благородного мрамора. Благодаря этому использование раскраски ограничено. Высота строения относится к его длине 0,618. Если разделить Парфенон по пропорциям золотого сечения, получатся определенные выступы фасада.

Все эти сооружения имеют одно сходство - гармоничность сочетания форм и отменное качество строительства. Это объясняется использованием гармонического правила.

Важность золотого сечения для человека

Архитектура древних построек и средневековых домов довольно интересна и для дизайнеров современности. Это объясняется такими причинами:

  • Благодаря оригинальному оформлению домов можно не допустить надоевших штампов. Каждое такое здание является архитектурным шедевром.
  • Массовое применение правила для украшения скульптур и статуй.
  • Благодаря соблюдению гармонических пропорций взгляд притягивается к более важным деталям.

Важно! При создании проекта постройки и создании внешнего облика архитекторы средневековья применяли универсальные пропорции, опираясь на закономерности человеческого восприятия.

Сегодня психологи пришли к выводу, что принцип золотого сечения — не что иное, как человеческая реакция на определенное соотношение размеров и форм. В одном эксперименте группе испытуемых предложили согнуть бумажный лист таким образом, чтобы стороны получились с оптимальными пропорциями. В 85 результатах из 100 люди сгибали лист практически в точном соответствии с гармоническим правилом.

Как утверждают современные ученые, показатели золотого сечения относятся скорее к сфере психологии, нежели характеризуют закономерности физического мира. Это объясняет, почему к нему проявляется такой интерес со стороны мистификаторов. Однако при построении объектов согласно этому правилу человек воспринимает их более комфортно.

Использование золотого сечения в дизайне

Принципы использования универсальной пропорции все чаще используют при строительстве частных домов. Особое внимание уделяется соблюдению оптимальных пропорций конструкции. Немало внимания уделяют правильному распределению внимания внутри дома.

Современная интерпретация золотого сечения уже не относится лишь к правилам геометрии и формы. Сегодня принципу гармонических пропорций подчиняются не только размеры деталей фасада, площадь комнат или длины фронтонов, но и цветовая палитра, используемая при создании интерьера.

Соорудить гармоничное строение на модульном основании гораздо проще. Многие отделения и помещения в этом случае выполняются как отдельные блоки. Они проектируются в строгом соответствии с гармоническим правилом. Возвести здание как набор отдельных модулей, значительной проще, чем создавать единую коробку.

Многие фирмы, занимающиеся сооружением загородных домов, при создании проекта соблюдают гармоническое правило. Это позволяет создать у клиентов впечатление, что конструкция здания детально проработана. Такие дома обычно описывают, как наиболее гармоничные и комфортные в использовании. При оптимальном выборе площадей комнат жильцы психологически ощущают успокоение.

Если дом возведен без учета гармонических пропорций, можно создать планировку, которая будет по соотношению размеров стен приближена к показателю 1:1,61. Для этого в комнатах устанавливают дополнительные перегородки, или переставляют предметы мебели.

Аналогично меняют габариты дверей и окон таким образом, чтобы проем имел ширину, показатель которой меньше значения высоты в 1,61 раза.

Сложнее подбирать цветовые решения. В этом случае можно соблюдать упрощенное значение золотого сечения - 2/3. Основным цветовым фоном следует занять 60% пространства комнаты. Оттеняющий оттенок занимает 30% помещения. Оставшаяся площадь поверхностей закрашивается близкими друг к другу тонами, усиливающими восприятие выбранного цвета.

Внутренние стены комнат делят горизонтальной полосой. Ее располагают в 70 см от пола. Высота мебели должна находиться в гармоническом соотношении с высотой стен. Это правило относится и к распределению длин. К примеру, диван должен иметь габариты, которые бы оказались не меньше 2/3 длины простенка. Площадь помещения, которая занята предметами мебели, тоже должна иметь определенное значение. Она относится к общей площади всего помещения как 1:1,61.

Золотая пропорция сложно применима на практике ввиду наличия всего одного числа. Именно поэтому. Проектирую гармоничные строения, пользуются рядом чисел Фибоначчи. Благодаря этому обеспечивается разнообразие вариантов форм и пропорций деталей строения. Ряд чисел Фибоначчи также носит название золотого. Все значения строго соответствуют определенной математической зависимости.

Кроме ряда Фибоначчи, в современной архитектуре применяют и другой метод проектирования - принцип, заложенный французским архитектором Ле Корбюзье. При выборе этого способа отправной единицей измерения выступает рост владельца дома. Исходя из этого показателя рассчитывают размеры здания и внутренних помещений. Благодаря этому подходу дом получается не только гармоничным, но и приобретает индивидуальность.

Любой интерьер приобретет более завершенный вид, если в нем использовать карнизы. При использовании универсальных пропорций можно вычислить его размер. Оптимальными показателями являются 22,5, 14 и 8,5 см. Устанавливать карниз следует по правилам золотого сечения. Маленькая сторона декоративного элемента должна относиться к большей так, как относится к сложенным значениям двух сторон. Если большая сторона будет равна 14 см, то маленькую стоит сделать 8,5 см.

Придать помещению уюта можно путем деления стеновых поверхностей при помощи гипсовых зеркал. Если стена поделена бордюром, от оставшейся большей части стены следует отнять высоту карнизной планки. Для создания зеркала оптимальной длины от бордюра и карниза следует отступить одинаковое расстояние.

Заключение

Дома, построенные по принципу золотого сечения, действительно получаются очень удобными. Однако цена постройки таких строений довольно высока, поскольку стоимость стройматериалов ввиду нетипичных размеров увеличивается на 70%. Этот подход совершенно не нов, поскольку большинство домов прошлого века создавали исходя из параметров хозяев.

Благодаря использованию метода золотого сечения в строительстве и дизайне здания получаются не только комфортабельными, но и долговечными. Они выглядят гармонично и привлекательно. Интерьер тоже оформляют по универсальной пропорции. Это позволяет грамотно использовать пространство.

В таких комнатах человек ощущает себя максимально комфортно. Соорудить дом с использованием принципа золотого сечения можно самостоятельно. Главное - рассчитать нагрузки на элементы строения, и правильно выбрать материалы.

Метод золотого сечения используют в дизайне интерьера, размещая в комнате декоративные элементы определенных размеров. Это позволяет придать помещению уюта. Цветовые решения тоже выбирают в соответствии с универсальными гармоническими пропорциями.

Ещё в древнем Египте было известно Золотое сечение , Леонардо да Винчи и Евклид изучали свойства его. Зрительное восприятие человека устроено таким образом, что он различает по форме все предметы, которые его окружают. Его интерес к предмету или его форме, продиктован иногда необходимостью, или этот интерес могла вызвать красота предмета. Если в самой основе построения формы, использовано сочетание золотого сечения и законы симметрии, то это наилучшее сочетание для визуального восприятия человеком, который ощущает гармонию и красоту. Всё целое состоит из частей, больших и малых, и эти разной величины части имеют определённое отношение, как друг к другу, так и к целому. А высшее проявление функционального и структурного совершенства в природе, науке, искусстве, архитектуре и технике это Принцип золотого сечения . Понятие о золотом сечении ввел в научный обиход древнегреческий математик и философ (VI в. до н.э.) Пифагор. Но само знание о золотом сечении он позаимствовал у древних египтян. Пропорции всех построек храмов, пирамиды Хеопса, барельефов, предметы быта и украшения из гробниц показывают, что соотношение золотого сечения активно использовалось древними мастерами ещё задолго до Пифагора. Как пример: барельеф из храма Сети I в Абидосе и в барельефе Рамзеса использован принцип золотого сечения в пропорциях фигур. Выяснил это архитектор Ле Корбюзье. На деревянной доске извлечённой из гробницы Зодчего Хесира, изображен рельефный рисунок, на котором виден сам зодчий, держащий в руках инструменты для измерений, которые изображены в положении фиксирующем принципы золотого сечения . Знал о принципах золотого сечения и Платон (427...347 гг. до н.э.). Диалог «Тимей» тому доказательство,так как он посвящен вопросам золотого деления , эстетическим и математическим воззрениям школы Пифагора. Принципы Золотого сечения использованы древнегреческими архитекторами в фасаде храма Парфенона. Циркули которые применяли в своей работе древние архитекторы и скульпторы античного мира были обнаружены при раскопках храма Парфенона.

Парфенон, Акрополь., Афины В Помпеях (музей в Неаполе) пропорции золотого деления так же имеются в наличии. В античной литературе дошедшей до нас принцип золотого сечения упоминается впервые в «Началах» Евклида. В книге «Начал» во второй части дается геометрический принцип золотого сечения . Последователями Евклида стали Папп (III в. н.э.) Гипсикл (II в. до н.э.), и др. В средневековую Европу с принципом золотого сечения познакомились по переводам с арабского Евклидовских «Начал». Принципы золотого сечения были известны только узкому кругу посвященных,они ревностно оберегались, хранились в строгой тайне. Наступила эпоха возрождения и интерес к принципам золотого сечения увеличивается в среде учёных и художников так как этот принцип применим и в науке, и в архитектуре, и в искусстве. И Леонардо Да Винчи стал использовать эти принципы в своих произведениях, даже более того он начал писать книгу по геометрии, но но в это время появилась книга монаха Луки Пачоли, который опередил его и выпустил в свет книгу «Божественная пропорция» после чего Леонардо оставил свой труд не законченным. По оценкам историков науки и современников, Лука Пачоли являлся настоящим светилом, гениальным Итальянским математиком в проживавшим в период между Галилеем и Фибоначчи. Являясь учеником художника Пьеро делла Франчески, Лука Пачоли написал две книги, «О перспективе в живописи», название одной из них. Он по мнению многих является творцом начертательной геометрии. Лука Пачоли по приглашению герцога Моро в 1496 г приезжает в Милан, и читает там лекции по математике. Леонардо да Винчи в это время работал при дворе Моро. Изданная в 1509 году в Венеции книга Луки Пачоли «Божественная пропорция» стала восторженным гимном золотой пропорции , с иллюстрациями прекрасно выполненными, есть все основания полагать что иллюстрации выполнил сам Леонардо да Винчи. Монах Лука Пачоли, как одно из достоинств золотой пропорции выделял её «божественную суть». Понимая научную и художественную ценность золотого сечения,Леонардо да Винчи посвящал много времени для его изучения. Выполняя сечение стереометрического тела, состоящего из пятиугольников, он получал прямоугольники с отношениями сторон в соответствии с золотым сечением . И название он ему дал “золотое сечение ”. Которое держится до сих пор. Альбрехт Дюрер,так же занимается изучением золотого сечения в Европе, встречается с монахом Лукой Пачоли. Иоган Кеплер величайший астроном того времени, первым обращает внимание на значение золотого сечения для ботаники называя его сокровищем геометрии. Он называл золотую пропорцию продолжающей саму себя «Она так устроена, – он говорил, – сумма двух младших членов нескончаемой пропорции дают третий член, а любые два последних члена, если их сложить, дают следующий член, причем та же пропорция сохраняется до бесконечности».

Золотой треугольник:: Золотое отношение и Золотое Сечение:: Золотой прямоугольник:: Золотая спираль

Золотой треугольник

Что бы найти отрезки золотой пропорции нисходящего и восходящего рядов воспользуемся пентаграммой.

Рис. 5. Построение правильного пятиугольника и пентаграммы

Для того чтобы построить пентаграмму нужно начертить правильный пятиугольник по разработанному немецким живописцем и графиком Альбрехтом Дюрером, способом построения. Если O – центр окружности, A – точка на окружности и Е – середина отрезка ОА. Перпендикуляр к радиусу ОА, восставленный в точке О, пересекается с окружностью в точке D. Используя циркуль, отметим отрезок на диаметре CE = ED. Тогда длина стороны вписанного в окружность правильного пятиугольника равна DC. Откладываем на окружности отрезки DC и получим пять точек для начертания правильного пятиугольника. Затем через один угол соединяем углы пятиугольника диагоналями и получим пентаграмму. Все диагонали пятиугольника делят друг друга на отрезки, связанные между собой золотой пропорцией.

Каждый конец пятиугольной звезды представляет собой золотой треугольник. Его стороны образуют угол 36° при вершине, а основание, отложенное на боковую сторону, делит ее в пропорции золотого сечения. Проводим прямую АВ. От точки А откладываем на ней три раза отрезок О произвольной величины, через полученную точку Р проводим перпендикуляр к линии АВ, на перпендикуляре вправо и влево от точки Р откладываем отрезки О. Полученные точки d и d1 соединяем прямыми с точкой А. Отрезок dd1 откладываем на линию Ad1, получая точку С. Она разделила линию Ad1 в пропорции золотого сечения. Линиями Ad1 и dd1 пользуются для построения «золотого» прямоугольника.

Рис. 6. Построение золотого

треугольника

Золотое сечение и Золотое Сечение

В математике и искусстве, две величины находятся в золотой пропорции, если соотношение между суммой этих величин и большиего такое же, как соотношение между большего и меньшего. Выразил алгебраически: Золотое сечение часто обозначается греческой буквой фи (? или?). фигура золотого сечения иллюстрирует геометрические отношения, которые определяют эту константу. Золотое сечение является иррациональной математической константой, примерно 1,6180339887.

Золотой прямоугольник

Золотой прямоугольник представляет собой прямоугольник, длины сторон находятся в золотой пропорции, 1: ? (один-к-фи), то есть 1: или примерно 1:1.618. Золотой прямоугольник может быть построен только с линейкой и циркулем: 1. Построить простой квадрат 2. Нарисуйте линию от середины одной стороны площади к противоположному углу 3. Используйте эту линию в качестве радиуса, чтобы нарисовать дугу, которая определяет высоту прямоугольника 4. Завершить золотой прямоугольник

Золотая спираль

В геометрии, золотой спиралью является логарифмическая спираль, фактор роста которой b связано с ? , золотым сечением. В частности, золотая спираль становится более широкой (дальше от места ее начала) на коэффициент ? для каждой четверти оборота который она делает.

Последовательные точки деления золотого прямоугольника на квадраты, лежат на логарифмической спирали, которая иногда известна как золотая спираль.

Золотое сечение в архитектуре и искусстве.

Многие архитекторы и художники свои работы исполняли в соответствии с пропорциями золотого сечения, особенно в виде золотого прямоугольника, в котором отношение большей стороны к меньшей имеет пропорции золотого сечения, полагая, что это соотношение будет эстетично. [ Источник: Wikipedia.org ]

Вот несколько примеров:


Парфенон, Акрополь., Афины . Этот древний храм подходит почти точно в золотой прямоугольник.

Витрувианский Человек Леонардо да Винчи можно сделать много линий прямоугольников в эту цифру. Затем, существуют три различных набора золотых прямоугольников: Каждый набор для области головы, туловища, и ног. Рисунок Леонардо Да Винчи Витрувианский Человек иногда путают с принципами "золотого прямоугольника", однако, это не так. Построение Витрувианского Человека основано на рисовании круга с диаметром, равным диагонали квадрата, перемещая его вверх таким образом, что он будет касаться основания квадрата и составление окончательного круга между основанием площади и средней точке между площадью центра квадрата и центра круга: Подробное объяснение о геометрических строительство >>

Золотое сечение в природе.

Адольф Цейзинг, чьи основные интересы были математика и философия, нашел золотую пропорцию в расположении ветвей вдоль стебля растения и прожилок в листьях. Он расширил свои исследования и от растений перешёл к животным, изучая скелеты животных и разветвлений их вен и нервов, а так же в пропорциях химических соединений и геометрии кристаллов, вплоть до использования золотого сечения в изобразительном искусстве. В этих явлениях, он увидел, что золотая пропорция используется везде в качестве универсального закона, Цейзинг написал в 1854 году.: Золотое сечение является универсальным законом, в котором содержится основной принцип формирующий стремление к красоте и полноте в таких областях, как природы, так и искусства, которая пронизывает, как первостепенный духовный идеал, всех структур, форм и пропорций, будь то космическое или физическое лицо, органическое или неорганическое, акустическое или оптическое, но свою наиболее полную реализацию принцип золотого сечения находит, в человеческой форме.

Примеры:

Срез оболочки Nautilus открывает золотой принцип построения спирали.

Моцарт разделил свои сонаты на две части, длины которых отражают золотое сечение , хотя существует много споров о том, сознательно ли он это сделал. В более современные времена, венгерский композитор Бела Барток и французский архитектор Ле Корбюзье целенаправленно включали принцип золотой пропорции в свои работы. Даже сегодня, золотое сечение окружает нас повсеместно в искусственных предметах. Посмотрите на практически любой христианский крест, отношение вертикальной части к горизонтальной золотая пропорция. Чтобы найти золотой прямоугольник, посмотрите в своём бумажнике, и вы найдёте там кредитные карты. Несмотря на эти многочисленные доказательства приведённые в произведениях искусства созданные на протяжении веков, в настоящее время ведутся дискуссии среди психологов о том, действительно ли люди воспринимают золотые пропорции, в частности, золотой прямоугольник, как более красивым, чем другие формы. В 1995 году статье в журнале, профессор Кристофер Грин, из Йоркского университета в Торонто, обсуждает ряд экспериментов на протяжении многих лет, которые не показали какого либо предпочтение форме золотой прямоугольник, но отмечает, что некоторые другие представили доказательства того, что такое предпочтение не существует. Но независимо от науки, золотое сечение сохраняет свою загадочность, отчасти потому, что отлично применяется во многих неожиданных местах в природе. Спираль раковины моллюска Наутилус удивительно близка к золотому сечению , и отношение длины грудной клетки и живота у большинства пчел почти золотое сечение . Даже сечения из наиболее распространенных форм человеческой ДНК прекрасно вписывается в золотой десятиугольник. Золотое сечение и его родственники также появляются во многих неожиданных контекстах, в математике, и они продолжают вызвать интерес математических сообществ. Д-р Стивен Марквардт, бывший пластический хирург, использовал эту загадочную пропорцию золотое сечение , в своей работе, которое уже давно отвечает за красоту и гармонию, чтобы сделать маску, которую он считал самой красивой формой человеческого лица которое только может быть.

Маска совершенного человеческого лица

Египетская царица Нефертити (1400 до н.э.)

лицо Иисуса копия с Туринской плащанице и исправлено в соответствии с маской д-ра Стивена Марквардта.

«Усредненное» (синтезированное) лицо из числа знаменитостей. С пропорциями золотого сечения.

Использовались материалы сайта: http://blog.world-mysteries.com/